Leroy Martial, Burnett Melanie S, Laurion Isabelle, Douglas Peter M J, Kallenbach Cynthia M, Comte Jérôme
Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la couronne, Quebec City, QC G1K 9A9, Canada.
Centre d'Études Nordiques (CEN), Université Laval, Pavillon Abitibi-Price, 2405 rue de la Terrasse, Quebec City, QC G1V 0A6, Canada.
ISME Commun. 2025 Feb 10;5(1):ycaf027. doi: 10.1093/ismeco/ycaf027. eCollection 2025 Jan.
Rising air temperatures and permafrost degradation drive the erosion of palsas (permafrost mounds mainly composed of frozen peat and ice layers) and lead to the formation of thermokarst ponds and lakes, known for their high greenhouse gas (GHG) emissions. This study investigates the impact of permafrost soil erosion during thermokarst lake formation on microbial community structure and its implications for GHG dynamics in a highly degraded permafrost valley (Nunavik, northern Quebec, Canada). Samples were collected from a palsa, an emerging lake connected to the palsa, surrounding peat and soil pore water, and two mature lakes which are older, stratified, and less connected to the palsa. Analysis of total and potentially active microbial communities, based on 16S rRNA gene amplicon sequence variants revealed significant changes in taxonomic and phylogenetic diversity during thermokarst lake formation. We found distinct assembly processes depending on the stage of formation. Firstly stochastics, they became more deterministic as lakes mature. Distinct methanogens/trophs communities in emerging lake led to lower CO:CH ratio compared to the surface of mature lakes. Which presented a greater diversity of methanogens and distinct methanotrophic communities, with acetogenic, hydrogenotrophic and methylotrophic methanogens along anaerobic an aerobic methanotrophs. Multivariate analyses revealed that selection processes were primarily driven by concentrations of CH, CO, and NO . The interplay between the nitrogen and carbon cycles appears to be pivotal in these assemblages, with nitrogen playing key roles on community structure. These findings underscore the significance of terrestrial-aquatic connectivity in shaping microbial communities and GHG emissions in thermokarst lakes.
气温上升和永久冻土退化促使泥炭丘(主要由冻结泥炭和冰层构成的永久冻土丘)遭到侵蚀,并导致热喀斯特池塘和湖泊的形成,这些池塘和湖泊以高温室气体排放而闻名。本研究调查了热喀斯特湖形成过程中永久冻土土壤侵蚀对微生物群落结构的影响及其对加拿大魁北克省北部努纳维克一个高度退化的永久冻土山谷中温室气体动态的影响。样本采集自一个泥炭丘、一个与泥炭丘相连的新出现的湖泊、周围的泥炭和土壤孔隙水,以及两个成熟湖泊,这两个成熟湖泊形成时间更早、有分层现象且与泥炭丘的联系较少。基于16S rRNA基因扩增子序列变体对总微生物群落和潜在活跃微生物群落的分析表明,在热喀斯特湖形成过程中,分类和系统发育多样性发生了显著变化。我们发现,根据形成阶段不同,群落组装过程也不同。首先是随机过程,随着湖泊成熟,它们变得更具确定性。新出现的湖泊中不同的产甲烷菌/营养菌群落导致其CO:CH比值低于成熟湖泊表面。成熟湖泊表面呈现出更多样化的产甲烷菌和不同的甲烷营养菌群落,包括产乙酸、氢营养和甲基营养的产甲烷菌以及厌氧和好氧的甲烷营养菌。多变量分析表明,选择过程主要由CH、CO和NO的浓度驱动。氮循环和碳循环之间的相互作用在这些组合中似乎至关重要,氮对群落结构起着关键作用。这些发现强调了陆地 - 水生连通性在塑造热喀斯特湖微生物群落和温室气体排放方面的重要性。