Xie Min, Derks Maik G N, Koch Eveline H W, van Boven C Bjorn, Janlad Minchakarn, Bagheri Behnaz, Xu Zexi, Kovryzhenko Daria, van Walree Cornelis A, Sobota Ana, Weingarth Markus, Wong-Ekkabut Jirasak, Karttunen Mikko, Breukink Eefjan, Killian J Antoinette, Sonnen Andreas F P, Lorent Joseph H
Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
Nuclear Magnetic Resonance Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
J Am Chem Soc. 2025 Mar 19;147(11):9175-9189. doi: 10.1021/jacs.4c12543. Epub 2025 Mar 5.
Membrane lipid oxidation is a universal process that occurs in situations of oxidative stress and is encountered in numerous physiological and pathological situations. Oxidized truncated phospholipids make up a large part of the oxidation products and alter the membrane properties in a way that can lead to cell death. However, the underlying mechanisms are not well understood nor is it clear whether environmental factors, such as pH, can modulate these effects. Using model membranes, we investigate how individual lipid aldehydes and carboxylic acids with truncated acyl chains alter the membrane structure. Our data shows that lipid aldehydes and carboxylic acids have different permeabilization efficiencies towards molecules of varying charge and size and that ΔC9 truncated lipids are usually more efficient in permeabilizing membranes than ΔC5. In terms of physical mechanisms, the ΔC9 truncated lipid carboxylic acid induces permeabilization and membrane curvature in a pH-dependent fashion. This is explained by ionization-dependent exposure of the carboxyl group to the water-bilayer interface, which increases the intrinsic molecular curvature of the oxidized lipid. Conversely, ΔC9 truncated lipid aldehydes and nonionized carboxyls do not induce curved structures but are more efficient in increasing permeability toward larger molecules. We further show that truncated lipids can escape the bilayer and accumulate at interfaces, implying that they might act on neighboring cells. This study indicates that oxidized phospholipids with truncated acyl chains disrupt membrane structure, depending on their specific molecular structure and the pH of the environment, opening a possible route for the design of lipid nanoparticles with pH-dependent drug release.
膜脂氧化是一个普遍存在的过程,发生在氧化应激情况下,在众多生理和病理情况下都会出现。氧化截短磷脂构成了氧化产物的很大一部分,并以一种可能导致细胞死亡的方式改变膜的性质。然而,其潜在机制尚未得到充分理解,环境因素(如pH值)是否能调节这些效应也尚不清楚。我们使用模型膜来研究具有截短酰基链的单个脂质醛和羧酸如何改变膜结构。我们的数据表明,脂质醛和羧酸对不同电荷和大小的分子具有不同的通透效率,并且ΔC9截短脂质通常比ΔC5更有效地使膜通透。就物理机制而言,ΔC9截短脂质羧酸以pH依赖的方式诱导通透和膜曲率。这可以通过羧基依赖于电离暴露于水 - 双层界面来解释,这增加了氧化脂质的固有分子曲率。相反,ΔC9截短脂质醛和非离子化羧基不会诱导弯曲结构,但在增加对较大分子的通透性方面更有效。我们进一步表明,截短脂质可以逃离双层并在界面处积累,这意味着它们可能作用于邻近细胞。这项研究表明,具有截短酰基链的氧化磷脂会破坏膜结构,这取决于它们的特定分子结构和环境的pH值,为设计具有pH依赖药物释放的脂质纳米颗粒开辟了一条可能的途径。