Suppr超能文献

在大面积模板上设计用于光捕获的范德华异质结构阵列的无掩膜合成。

Maskless Synthesis of van der Waals Heterostructure Arrays Engineered for Light Harvesting on Large Area Templates.

作者信息

Gardella Matteo, Zambito Giorgio, Ferrando Giulio, Barusso Lorenzo Ferrari, Chennuboina Rajesh, Repetto Luca, Barelli Matteo, Giordano Maria Caterina, Buatier de Mongeot Francesco

机构信息

Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, 16146, Italy.

出版信息

Small. 2025 Apr;21(15):e2400943. doi: 10.1002/smll.202400943. Epub 2025 Mar 5.

Abstract

Large area stacking of van der Waals heterostructure arrays, based on 2D Transition Metal Dichalcogenide semiconductors (TMDs), is achieved by an original physical deposition process utilizing Ion Beam Sputtering. Silica substrates endowed with periodically faceted nanoridges are fabricated using interference lithography and serve as templates for maskless deposition of TMD at glancing angles. This approach enables the creation of laterally confined few-layer WS nanostripe arrays coated by MoS films. The subwavelength periodicity of the high refractive index WS nanostripes facilitates the excitation of photonic anomalies at the onset of the evanescence condition. As a consequence, light flow is effectively steered and trapped within the 2D-TMDs heterostructures and the supporting dielectric slab. Photon harvesting is engineered in the flat optics regime by optimizing the thickness of the WS nanostripes, which serve as optical sensitizers. This innovative design achieves a resonant enhancement of optical absorption, up to a remarkable factor of 450%, when compared to a reference flat MoS/WS heterostructure of equivalent thickness. This result highlights the promising potential of the novel 2D-TMD platforms for scalable real-world applications of van der Waals heterostructures, targeting photoconversion, photocatalysis, and energy storage.

摘要

基于二维过渡金属二硫属化物半导体(TMDs)的范德华异质结构阵列的大面积堆叠,是通过利用离子束溅射的原始物理沉积工艺实现的。使用干涉光刻制造具有周期性刻面纳米脊的二氧化硅衬底,并将其用作在掠射角下无掩模沉积TMD的模板。这种方法能够创建由MoS薄膜包覆的横向受限的少层WS纳米条纹阵列。高折射率WS纳米条纹的亚波长周期性有助于在倏逝条件开始时激发光子异常。结果,光流被有效地引导并捕获在二维TMD异质结构和支撑介电平板内。通过优化用作光学敏化剂的WS纳米条纹的厚度,在平面光学区域中设计光子捕获。与等效厚度的参考平面MoS/WS异质结构相比,这种创新设计实现了光学吸收的共振增强,高达显著的450%。这一结果突出了新型二维TMD平台在范德华异质结构的可扩展实际应用中的潜力,目标是光转换、光催化和能量存储。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/679f/12001309/18e5599c4964/SMLL-21-2400943-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验