Jia Pan, Wang Lili, Zhang Yuhui, Yang Yating, Jin Xiaoyan, Zhou Min, Quan Di, Jia Meijuan, Cao Liuxuan, Long Run, Jiang Lei, Guo Wei
Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China.
CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Adv Mater. 2021 Apr;33(14):e2007529. doi: 10.1002/adma.202007529. Epub 2021 Mar 3.
Nanofluidic ion transport through van der Waals heterostructures, composed of two or more types of reconstructed 2D nanomaterials, gives rise to fascinating opportunities for light-energy harvesting, due to coupling between the optoelectronic properties of the layered constituents and ion transport in between the atomic layers. Here, a photoinduced active ion transport phenomenon through transition metal dichalcogenides (TMDs)-based van-der-Waals-like multilayer heterostructures is reported for harnessing ionic power from equilibrium electrolyte solution. The binary heterostructure comprises sequentially stacked 2D-WS and 2D-MoS multilayers with sub-1 nm interlayer spacing. Upon visible-light illumination, a net ionic flow is initiated through the Janus membrane, suggesting a directional cationic transport from WS to MoS part. The transport mechanism is explained in terms of a photovoltaic effect due to type II band alignment of WS /MoS heterostructures. The driving mechanism can be generally applied to a variety of heterogeneous TMD membranes with type II semiconductor heterojunctions. In equilibrium ionic solutions, the maximum ionic photoresponse approaches ≈21 µA cm and ≈45 mV under one sun equivalent excitation. Under optimized conditions, the harvested power density reaches 2 mW m . The proof-of-concept demonstration of photonic-to-ionic power generation within angstrom-scale confinement anticipates potential for light-controlled ionic circuits, artificial photosynthesis, and biomimetic energy conversion.
由两种或更多种重构的二维纳米材料组成的范德华异质结构中的纳米流体离子传输,由于层状组分的光电特性与原子层间离子传输之间的耦合,为光能收集带来了迷人的机遇。在此,报道了一种通过基于过渡金属二硫属化物(TMD)的类范德华多层异质结构的光致活性离子传输现象,用于从平衡电解质溶液中获取离子能量。该二元异质结构由层间间距小于1纳米的二维WS和二维MoS多层依次堆叠而成。在可见光照射下,通过双面膜引发了净离子流,表明阳离子从WS部分向MoS部分的定向传输。传输机制是根据WS/MoS异质结构的II型能带排列所导致的光伏效应来解释的。该驱动机制通常可应用于具有II型半导体异质结的各种异质TMD膜。在平衡离子溶液中,在一个等效太阳光激发下,最大离子光响应接近≈21 μA/cm²和≈45 mV。在优化条件下,收集到的功率密度达到2 mW/m²。在埃尺度限制内的光子到离子发电的概念验证演示预示了光控离子电路、人工光合作用和仿生能量转换的潜力。