Kovalev Valentin, Spahr Dominik, Winkler Bjoern, Bayarjargal Lkhamsuren, Wedek Lena, Aslandukova Alena, Pakhomova Anna, Garbarino Gaston, Bykova Elena
Goethe University Frankfurt, Institute of Geosciences, 60438, Frankfurt am Main, Germany.
Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany.
Commun Chem. 2025 Mar 5;8(1):66. doi: 10.1038/s42004-025-01450-0.
The behavior of iron carbonates at high pressures is relevant for geological processes occurring in Earth interiors. Here, cubic iron sp-carbonate Fe[CO] was synthesized in diamond anvil cell by reacting FeO and CO at 65(4) GPa and 3000(±500) K, simulating the environment of localized thermal anomalies in the mantle. The crystal structure, determined by in situ single-crystal X-ray diffraction, features pyramidal [CO] anions. The experimental crystal structure corresponds to a structural model from density functional theory calculations. Experimentally determined values for zero-pressure volume V and bulk modulus K are: V = 1059(17) Å, K = 160(18) GPa, The DFT-calculated Raman spectrum, modeled with zinc substituting iron, matches the experimental one, supporting the structural model's accuracy. Fe[CO] remained stable upon decompression down to 25 GPa, below which it amorphized. DFT calculations also reveal a spin crossover of Fe cations at 95 GPa, which is significantly higher than in other Fe-containing carbonates.
碳酸铁在高压下的行为与地球内部发生的地质过程相关。在此,通过在65(4)吉帕和3000(±500)开尔文的条件下使FeO与CO反应,在金刚石对顶砧中合成了立方铁超碳酸盐Fe[CO],模拟了地幔中局部热异常的环境。通过原位单晶X射线衍射确定的晶体结构以金字塔形的[CO]阴离子为特征。实验晶体结构与密度泛函理论计算得出的结构模型相符。零压力体积V和体模量K的实验测定值为:V = 1059(17) Å,K = 160(18)吉帕。用锌替代铁建模的DFT计算拉曼光谱与实验光谱匹配,支持了结构模型的准确性。Fe[CO]在减压至25吉帕时仍保持稳定,低于此压力则会非晶化。DFT计算还揭示了Fe阳离子在95吉帕时的自旋交叉,这一压力显著高于其他含铁碳酸盐中的情况。