Li Beiye C, Cairney Hugh, Jin Yu, Park Jinsoo, Sohoni Siddhartha, Lloyd Lawson T, Liu Yuzi, Jureller Justin E, Ryu Young Jay, Chariton Stella, Prakapenka Vitali B, Schaller Richard D, Galli Giulia, Engel Gregory S
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.
ACS Nano. 2025 Mar 18;19(10):10359-10368. doi: 10.1021/acsnano.4c18414. Epub 2025 Mar 6.
Metal halide octahedra form the fundamental functional building blocks of metal halide perovskites, dictating their structures, optical properties, electronic structures, and dynamics. In this study, we show that the connectivity of bismuth halide octahedra in CsBiBr and CsBiI quantum dots (QDs) changes with different halide elements. We use first-principles calculations to reveal the key role of the connectivity of bismuth halide octahedra on the wave function symmetry, Huang-Rhys factor, and exciton-phonon interaction strength. Following QD synthesis via a ligand-mediated transport method, the effect of connectivity is verified with transient absorption spectroscopy, where we contrast CsBiBr and CsBiI QD exciton dynamics. In photoexcited CsBiI QDs, phonons related to the vibrational motions of face-sharing [BiI] bioctahedra couple strongly to the electronic state and drive rapid carrier relaxation. Equivalent signals are not observed for photoexcited CsBiBr QDs, implying a lack of phonon involvement in band-edge absorption and subsequent exciton relaxation. Our findings suggest that structural engineering can effectively tune the exciton-phonon coupling and therefore influence exciton relaxation and recombination in perovskite nanomaterials.
金属卤化物八面体构成了金属卤化物钙钛矿的基本功能结构单元,决定了它们的结构、光学性质、电子结构和动力学。在本研究中,我们表明,CsBiBr和CsBiI量子点(QD)中卤化铋八面体的连接性会随卤化物元素的不同而变化。我们使用第一性原理计算来揭示卤化铋八面体连接性在波函数对称性、黄-里斯因子和激子-声子相互作用强度方面的关键作用。通过配体介导的传输方法合成量子点后,利用瞬态吸收光谱验证了连接性的影响,我们对比了CsBiBr和CsBiI量子点的激子动力学。在光激发的CsBiI量子点中,与共面[BiI]双八面体振动运动相关的声子与电子态强烈耦合,并驱动载流子快速弛豫。对于光激发的CsBiBr量子点未观察到等效信号,这意味着在带边吸收和随后的激子弛豫过程中不存在声子参与。我们的研究结果表明,结构工程可以有效地调节激子-声子耦合,从而影响钙钛矿纳米材料中的激子弛豫和复合。