Biswas Sudhangshu Kumar, Sumon Md Mehedi Hasan, Ahmed Sabbir, Ruma Rumana Akter, Parvin Anzana, Paul Dipak Kumar, Roy Apurba Kumar, Tang Swee-Seong
Bacteriophage Biology and Genomics Lab, Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh.
Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh.
Phage (New Rochelle). 2024 Dec 18;5(4):186-202. doi: 10.1089/phage.2024.0005. eCollection 2024 Dec.
The escalating global threat of antibiotic resistance has prompted a critical need for innovative approaches to bacterial infection treatment. In terms of management, bacterial-associated disorders have reached a critical point in the world due to the advent of drug-resistant types of bacteria. Nonetheless, continued bacteriophage research presents a promising frontier in the battle against bacterial infections. In this study, we explored the effectiveness of bacteriophage therapy against antibiotic-resistant bacteria. According to our viewpoint, phage therapy could replace antibiotics in terms of safety, efficacy, and specificity. Furthermore, phage therapy offers versatility in administering single phage, phage products, or modified phage against various resistant bacteria. Moreover, Phage cocktails, with their synergistic combinations, showcase a holistic approach, mitigating the risk of resistance and expanding treatment possibilities. Similarly, the synergy between phages and antibiotics holds promise for overcoming antibiotic resistance and forging a path toward more effective and sustainable antimicrobial strategies. The review provides insights into the transformative impact of bacteriophage therapy on current bacterial infection treatment paradigms, its application with methodological challenges and limitations, as well as insights to scientists and policymakers on the best areas to study phages in order to combat antimicrobial resistance.
全球抗生素耐药性威胁不断升级,促使人们迫切需要创新的细菌感染治疗方法。在管理方面,由于耐药菌的出现,与细菌相关的疾病在全球已达到危急关头。尽管如此,噬菌体研究的持续开展为对抗细菌感染提供了一个充满希望的领域。在本研究中,我们探讨了噬菌体疗法对抗生素耐药菌的有效性。我们认为,噬菌体疗法在安全性、有效性和特异性方面可以替代抗生素。此外,噬菌体疗法在使用单一噬菌体、噬菌体产品或经过改造的噬菌体对抗各种耐药菌方面具有多样性。而且,噬菌体鸡尾酒疗法通过其协同组合,展现了一种整体方法,降低了耐药风险并拓展了治疗可能性。同样,噬菌体与抗生素之间的协同作用有望克服抗生素耐药性,并为制定更有效和可持续的抗菌策略开辟道路。这篇综述深入探讨了噬菌体疗法对当前细菌感染治疗模式的变革性影响、其应用所面临的方法学挑战和局限性,以及为科学家和政策制定者提供的关于研究噬菌体以对抗抗菌药物耐药性的最佳领域的见解。