Nieto-Giraldo Diego Fernando, Rodas Rodríguez José Mauricio, Torres-Osorio Javier Ignacio
Department of Chemistry, Universidad de Caldas Calle 65 # 26-10 Manizales Colombia
Grupo de investigación en Magnetobiología, Department of Physics, Universidad de Caldas Calle 65 # 26-10 Manizales Colombia.
RSC Adv. 2025 Mar 5;15(9):7121-7126. doi: 10.1039/d5ra00836k. eCollection 2025 Feb 26.
The field of magnetobiology is garnering increasing interest due to its significant contributions across various disciplines, including biotechnology, medicine, and agriculture. Despite experimental evidence indicating the impact of magnetic fields on living organisms, the precise molecular-level effects of these fields remain unclear. Experimental studies of these phenomena at the molecular scale present significant challenges. In this regard, contributions from physics and theoretical chemistry are particularly relevant. However, the computational methodologies developed thus far are unable to incorporate magnetic fields into complex systems such as membrane proteins or biomolecules. In this context, the present work integrates the homogeneous magnetic flux density () term into the Verlet velocity algorithm implemented in the GROMACS package. This modification enables molecular dynamics simulations for such systems under the influence of a magnetic field. The implementation has been validated using two model systems: a free ion exposed to ranging from 80 kT to 1500 kT, and a water box exposed to between 0 T and 10 T. Furthermore, the stability of a protein was tested under the influence of ranging from 0 T to 10 kT. The results demonstrated that the systems behaved in accordance with both theoretical and experimental expectations, thereby validating the modification of the algorithm and paving the way for future applications.
磁生物学领域因其在生物技术、医学和农业等各个学科中的重大贡献而越来越受到关注。尽管实验证据表明磁场对生物体有影响,但这些磁场在分子水平上的确切作用仍不清楚。在分子尺度上对这些现象进行实验研究面临重大挑战。在这方面,物理学和理论化学的贡献尤为重要。然而,迄今为止开发的计算方法无法将磁场纳入膜蛋白或生物分子等复杂系统。在此背景下,本研究将均匀磁通密度()项整合到GROMACS软件包中实现的Verlet速度算法中。这种修改使得能够在磁场影响下对这类系统进行分子动力学模拟。该实现已通过两个模型系统进行验证:一个暴露于80 kT至1500 kT范围内的自由离子,以及一个暴露于0 T至10 T之间的水盒。此外,还测试了在0 T至10 kT范围内的磁场影响下蛋白质的稳定性。结果表明,这些系统的行为符合理论和实验预期,从而验证了算法的修改,并为未来的应用铺平了道路。