Roussis Ioannis-Marios, Pearton David J, Niazi Umar, Tsaknakis Grigorios, Papadopoulos Giorgio L, Cook Riley, Saqi Mansoor, Ragoussis Jiannis, Strouboulis John
Red Cell Haematology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
Department of Biology, University of Crete, Heraklion, Crete, Greece.
PLoS Genet. 2025 Mar 6;21(3):e1011617. doi: 10.1371/journal.pgen.1011617. eCollection 2025 Mar.
Friend of GATA1 (FOG-1) is an essential transcriptional co-factor of the master erythroid transcription factor GATA1. The knockout of the Zfpm1 gene, coding for FOG-1, results in early embryonic lethality due to anemia in mice, similar to the embryonic lethal phenotype of the Gata1 gene knockout. However, a detailed molecular analysis of the Zfpm1 knockout phenotype in erythropoiesis is presently incomplete. To this end, we used CRISPR/Cas9 to knockout Zfpm1 in mouse erythroleukemic (MEL) cells. Phenotypic characterization of DMSO-induced terminal erythroid differentiation showed that the Zfpm1 knockout MEL cells did not progress past the proerythroblast stage of differentiation. Expression profiling of the Zfpm1 knockout MEL cells by RNAseq showed a lack of up-regulation of erythroid-related gene expression profiles. Bioinformatic analysis highlighted cholesterol transport as a pathway affected in the Zfpm1 knockout cells. Moreover, we show that the cholesterol transporters Abca1 and Ldlr fail to be repressed during erythroid differentiation in Zfpm1 knockout cells, resulting in higher intracellular lipid levels and higher membrane fluidity. We also show that in FOG-1 knockout cells, the nuclear levels of SREBP2, a key transcriptional regulator of cholesterol biosynthesis and transport, are markedly increased. On the basis of these findings we propose that FOG-1 (and, potentially, GATA1) regulate cholesterol homeostasis during erythroid differentiation directly through the down regulation of cholesterol transport genes and indirectly, through the repression of the SREBP2 transcriptional activator of cholesterol homeostasis. Taken together, our work provides a molecular basis for understanding FOG-1 functions in erythropoiesis and reveals a novel role for FOG-1 in cholesterol transport.
GATA1 之友(FOG-1)是主要的红细胞转录因子 GATA1 的重要转录辅因子。编码 FOG-1 的 Zfpm1 基因敲除会导致小鼠因贫血而出现早期胚胎致死,这与 Gata1 基因敲除的胚胎致死表型相似。然而,目前对红细胞生成中 Zfpm1 敲除表型的详细分子分析并不完整。为此,我们使用 CRISPR/Cas9 在小鼠红白血病(MEL)细胞中敲除 Zfpm1。对二甲基亚砜诱导的终末红细胞分化进行表型特征分析表明,Zfpm1 敲除的 MEL 细胞在分化过程中未能超过早幼红细胞阶段。通过 RNA 测序对 Zfpm1 敲除的 MEL 细胞进行表达谱分析,结果显示缺乏红细胞相关基因表达谱的上调。生物信息学分析突出了胆固醇转运是 Zfpm1 敲除细胞中受影响的一条途径。此外,我们发现胆固醇转运蛋白 Abca1 和 Ldlr 在 Zfpm1 敲除细胞的红细胞分化过程中未能受到抑制,导致细胞内脂质水平升高和膜流动性增加。我们还发现,在 FOG-1 敲除细胞中,胆固醇生物合成和转运的关键转录调节因子 SREBP2 的核水平显著增加。基于这些发现,我们提出 FOG-1(可能还有 GATA1)在红细胞分化过程中直接通过下调胆固醇转运基因以及间接通过抑制胆固醇稳态的转录激活因子 SREBP2 来调节胆固醇稳态。综上所述,我们的工作为理解 FOG-1 在红细胞生成中的功能提供了分子基础,并揭示了 FOG-1 在胆固醇转运中的新作用。