Suppr超能文献

评估脱细胞软骨细胞外基质在优化聚羟基丁酸酯-壳聚糖-羟基磷灰石/壳聚糖-细胞外基质核壳电纺支架中的作用:物理化学和生物学特性。

Evaluation of the effects of cartilage decellularized ECM in optimizing PHB-chitosan-HNT/chitosan-ECM core-shell electrospun scaffold: Physicochemical and biological properties.

作者信息

Ghadirian Sepideh, Shariati Laleh, Karbasi Saeed

机构信息

Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

Biomater Adv. 2025 Jul;172:214249. doi: 10.1016/j.bioadv.2025.214249. Epub 2025 Feb 28.

Abstract

Cartilage regeneration is still a highly challenging field due to its low self-healing ability. This study used a core-shell electrospinning technique to enhance cartilage tissue engineering by incorporating cartilage extracellular matrix (ECM). The core of fibers included poly(3-hydroxybutyrate)-Chitosan (PHB-Cs) and Halloysite nanotubes. The shell of fibers consisted of Cs and ECM (0, 1, 3, 5 wt%). Subsequently, the scaffolds were named 0E, 1E, 3E, and 5E. The study aimed to assess the impact of ECM on cellular behavior and chondrogenesis. Our findings indicate that ECM reduced fiber diameter from 775 nm for the 0E scaffold to 454 nm for the 1E scaffold. Water contact angle measurements revealed an increasing trend by ECM addition, from 42° for 0E to 67° for 1E. According to mechanical analysis, the 1E scaffold represented the highest strength (5.81 MPa) and strain (3.17%). Based on these analyses, the 1E was considered the optimum scaffold. MTT analysis showed cell viability of over 80% for the 0E and 1E. Also, the gene expression level was assessed for Collagen II, Aggrecan, SOX 9, and Collagen X. The results represented that in the 1E scaffold Collagen II, Aggrecan, and SOX 9 were more upregulated at the end of the 21st day. However, in the 1E scaffold collagen X, as a hypertrophy marker, was downregulated at the end of the experiment. Overall, these results confirmed the potential of the 1E scaffold to be introduced as a promising cartilage tissue engineering scaffold for further studies.

摘要

由于软骨的自我修复能力较低,软骨再生仍然是一个极具挑战性的领域。本研究采用核壳电纺技术,通过掺入软骨细胞外基质(ECM)来增强软骨组织工程。纤维的核心包括聚(3-羟基丁酸酯)-壳聚糖(PHB-Cs)和埃洛石纳米管。纤维的外壳由壳聚糖和ECM(0、1、3、5重量%)组成。随后,这些支架分别被命名为0E、1E、3E和5E。该研究旨在评估ECM对细胞行为和软骨形成的影响。我们的研究结果表明,ECM使纤维直径从0E支架的775纳米减小到1E支架的454纳米。水接触角测量显示,添加ECM后呈增加趋势,从0E的42°增加到1E的67°。根据力学分析,1E支架表现出最高的强度(5.81兆帕)和应变(3.17%)。基于这些分析,1E被认为是最佳支架。MTT分析显示,0E和1E的细胞活力超过80%。此外,还评估了胶原蛋白II、聚集蛋白聚糖、SOX 9和胶原蛋白X的基因表达水平。结果表明,在1E支架中,胶原蛋白II、聚集蛋白聚糖和SOX 9在第21天结束时上调更为明显。然而,在1E支架中,作为肥大标志物的胶原蛋白X在实验结束时下调。总体而言,这些结果证实了1E支架作为一种有前景的软骨组织工程支架用于进一步研究的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验