College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
Biomacromolecules. 2021 May 10;22(5):2284-2297. doi: 10.1021/acs.biomac.1c00366. Epub 2021 Apr 29.
Engineering scaffolds with structurally and biochemically biomimicking cues is essential for the success of tissue-engineered cartilage. Chitosan (CS)-based scaffolds have been widely used for cartilage regeneration due to its chemostructural similarity to the glycosaminoglycans (GAGs) found in the extracellular matrix of cartilage. However, the weak mechanical properties and inadequate chondroinduction capacity of CS give rise to compromised efficacy of cartilage regeneration. In this study, we incorporated short fiber segments, processed from electrospun aligned poly(lactic--glycolic acid) (PLGA) fiber arrays, into a citric acid-modified chitosan (CC) hydrogel scaffold for mechanical strengthening and structural biomimicking and meanwhile introduced cartilage-decellularized matrix (CDM) for biochemical signaling to promote the chondroinduction activity. We found that the incorporation of PLGA short fibers and CDM remarkably strengthened the mechanical properties of the CC hydrogel (+349% in compressive strength and +153% in Young's modulus), which also exhibited a large pore size, appropriate porosity, and fast water absorption ability. Biologically, the engineered CDM-Fib/CC scaffold significantly promoted the adhesion and proliferation of chondrocytes and supported the formation of matured cartilage tissue with a cartilagelike structure and deposition of abundant cartilage ECM-specific GAGs and type II collagen (+42% in GAGs content and +295% in type II collagen content). The enhanced mechanical competency and chondroinduction capacity with the engineered CDM-Fib/CC scaffold eventually fulfilled successful osteochondral regeneration in a rabbit model. This study thereby demonstrated a great potential of the engineered highly biomimetic chitosan-based scaffold in cartilage tissue repair and regeneration.
用具有结构和生物化学仿生特征的工程支架对于组织工程软骨的成功至关重要。壳聚糖(CS)基支架由于其与软骨细胞外基质中存在的糖胺聚糖(GAG)的化学结构相似,已被广泛用于软骨再生。然而,CS 的机械性能较弱和软骨诱导能力不足导致软骨再生的效果受到影响。在这项研究中,我们将短纤维段(由静电纺丝排列的聚乳酸-乙醇酸(PLGA)纤维阵列加工而成)掺入到柠檬酸改性壳聚糖(CC)水凝胶支架中,以增强机械性能和结构仿生特性,同时引入软骨脱细胞基质(CDM)以促进生化信号传导,从而提高软骨诱导活性。我们发现,PLGA 短纤维和 CDM 的掺入显著增强了 CC 水凝胶的机械性能(抗压强度增加了 349%,杨氏模量增加了 153%),同时还具有较大的孔径、适当的孔隙率和快速的吸水性。在生物学方面,工程化的 CDM-Fib/CC 支架显著促进了软骨细胞的黏附和增殖,并支持形成具有软骨样结构和丰富软骨细胞外基质特异性 GAGs 和 II 型胶原蛋白沉积的成熟软骨组织(GAGs 含量增加了 42%,II 型胶原蛋白含量增加了 295%)。工程化的 CDM-Fib/CC 支架增强了机械性能和软骨诱导能力,最终在兔模型中实现了成功的骨软骨再生。这项研究证明了工程化的高度仿生壳聚糖基支架在软骨组织修复和再生方面具有巨大的潜力。