Richards Bryan A, Ristoff Nathaniel, Smits Janis, Perez Amilcar Jeronimo, Fescenko Ilja, Aiello Maxwell D, Hubert Forrest, Silani Yaser, Mosavian Nazanin, Ziabari Maziar Saleh, Berzins Andris, Damron Joshua T, Kehayias Pauli, Egbebunmi Daniel, Shield Jeffrey E, Huber Dale L, Mounce Andrew M, Lilly Michael P, Karaulanov Todor, Jarmola Andrey, Laraoui Abdelghani, Acosta Victor M
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, United States.
ACS Nano. 2025 Mar 18;19(10):10048-10058. doi: 10.1021/acsnano.4c16703. Epub 2025 Mar 7.
Superparamagnetic iron-oxide nanoparticles (SPIONs) are promising probes for biomedical imaging, but the heterogeneity of their magnetic properties is difficult to characterize with existing methods. Here, we perform wide-field imaging of the stray magnetic fields produced by hundreds of isolated ∼30 nm SPIONs using a magnetic microscope based on nitrogen-vacancy centers in diamond. By analyzing the SPION magnetic field patterns as a function of the applied magnetic field, we observe substantial field-dependent transverse magnetization components that are typically obscured with ensemble characterization methods. We found negligible hysteresis in each of the three magnetization components for nearly all SPIONs in our sample. Most SPIONs exhibit a sharp Langevin saturation curve, enumerated by a characteristic polarizing applied field, . The distribution is highly asymmetric, with a standard deviation (σ = 1.4 mT) that is larger than the median (0.6 mT). Using time-resolved magnetic microscopy, we directly record SPION Néel relaxation, after switching off a 31 mT applied field, with a temporal resolution of ∼60 ms, which is limited by the ring-down time of the electromagnet coils. For small bias fields || = 1.5-3.5 mT, we observe a broad range of SPION Néel relaxation times - from milliseconds to seconds - that are consistent with an exponential dependence on . Our time-resolved diamond magnetic microscopy study reveals rich SPION sample heterogeneity and may be extended to other fundamental studies of nanomagnetism.
超顺磁性氧化铁纳米颗粒(SPIONs)是生物医学成像中很有前景的探针,但其磁性质的异质性很难用现有方法进行表征。在此,我们使用基于金刚石中氮空位中心的磁显微镜,对数百个孤立的约30纳米SPIONs产生的杂散磁场进行宽场成像。通过分析SPION磁场模式随外加磁场的变化,我们观察到显著的场依赖横向磁化分量,而这些分量通常会被整体表征方法所掩盖。我们发现样品中几乎所有SPIONs的三个磁化分量中的每一个都存在可忽略不计的磁滞现象。大多数SPIONs呈现出一条尖锐的朗之万饱和曲线,由一个特征极化外加场列举。该分布高度不对称,标准差(σ = 1.4 mT)大于中位数(0.6 mT)。使用时间分辨磁显微镜,在关闭31 mT外加场后,我们以约60毫秒的时间分辨率直接记录SPION奈耳弛豫,这受电磁线圈的衰减时间限制。对于小偏置场|| = 1.5 - 3.5 mT,我们观察到广泛的SPION奈耳弛豫时间——从毫秒到秒——这与对的指数依赖一致。我们的时间分辨金刚石磁显微镜研究揭示了丰富的SPION样品异质性,并且可能扩展到纳米磁性的其他基础研究。