Suppr超能文献

氧化铁纳米颗粒:生物合成、类过氧化物酶活性及生物安全性。

Iron oxide nanoparticles: biosynthesis, peroxidase-like activity, and biosafety.

作者信息

Hasan Yusur Ramzi, Faizal Wong Fadzlie Wong, Ashari Siti Efliza, Halim Murni, Mohamad Rosfarizan

机构信息

Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

Bioprocessing and Biomanufacturing Research Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

出版信息

Appl Microbiol Biotechnol. 2025 Sep 16;109(1):202. doi: 10.1007/s00253-025-13589-w.

Abstract

The rising threat of antibiotic-resistant bacterial infections has amplified the demand for alternative therapeutic strategies and efficient catalytic systems. While natural enzymes like horseradish peroxidase offer catalytic potential, their clinical use is limited by instability, high production costs, and environmental sensitivity. Iron oxide nanoparticles (FeO NPs) have emerged as promising alternatives, exhibiting unique physicochemical properties, magnetic responsiveness, biocompatibility, and intrinsic catalytic activity. A key advancement in this field is the adoption of green nanotechnology, which supports the eco-friendly biosynthesis of FeO NPs via biological systems. However, several limitations reduced catalytic activity under certain conditions. This review highlights progress in green synthesis, focusing on iron-resistant and probiotic bacteria as sustainable and scalable biogenic platforms. Compared to chemical methods, these biological routes reduce environmental impact, lower costs, and enhance nanoparticle stability and functionality. This review also addresses the factors influencing the peroxidase-like (POD) activity of NPs. The biomedical relevance of FeO NPs spans diverse applications, including antibacterial therapy, cancer treatment, biosensing, food safety, and enzyme-mimicking catalysis. However, despite their therapeutic promise, significant gaps remain in the biosafety and toxicity assessments of the catalytic activity of FeO. Hence, current advancement underscores the underutilized role of bacterial strains in nanoparticle synthesis and identifies critical knowledge gaps that need to be consolidated. It calls for standardized evaluation protocols to support the safe and effective translation of FeO into various applications. KEY POINTS: • The green synthesis approach of FeONPs offers an eco-friendly route over other methods • Probiotic-mediated synthesis of FeO NPs offers a sustainable and biocompatible approach • FeO NPs mimic POD-like activity for catalytic biomedical and environmental applications • POD-like activity of FeONPs boosts its antibacterial effects via ROS generation.

摘要

抗生素耐药性细菌感染的威胁日益增加,这使得对替代治疗策略和高效催化系统的需求不断扩大。虽然辣根过氧化物酶等天然酶具有催化潜力,但其临床应用受到不稳定性、高生产成本和环境敏感性的限制。氧化铁纳米颗粒(FeO NPs)已成为有前景的替代物,具有独特的物理化学性质、磁响应性、生物相容性和内在催化活性。该领域的一项关键进展是采用绿色纳米技术,该技术支持通过生物系统对FeO NPs进行生态友好型生物合成。然而,在某些条件下,一些局限性降低了催化活性。本综述重点介绍了绿色合成方面的进展,着重关注耐铁细菌和益生菌作为可持续且可扩展的生物源平台。与化学方法相比,这些生物途径减少了对环境的影响,降低了成本,并提高了纳米颗粒的稳定性和功能性。本综述还探讨了影响纳米颗粒类过氧化物酶(POD)活性的因素。FeO NPs的生物医学相关性涵盖多种应用,包括抗菌治疗、癌症治疗、生物传感、食品安全和模拟酶催化。然而,尽管它们具有治疗前景,但在FeO催化活性的生物安全性和毒性评估方面仍存在重大差距。因此,当前的进展凸显了细菌菌株在纳米颗粒合成中未得到充分利用的作用,并确定了需要巩固的关键知识空白。这需要标准化的评估方案,以支持将FeO安全有效地转化为各种应用。要点:• FeONPs的绿色合成方法比其他方法提供了一条生态友好的途径• 益生菌介导的FeO NPs合成提供了一种可持续且生物相容的方法• FeO NPs模拟POD样活性用于催化生物医学和环境应用• FeONPs的POD样活性通过产生活性氧增强其抗菌效果

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验