Suppr超能文献

一种用于质子交换膜燃料电池参数估计的混合黏菌增强收敛粒子群优化器。

A hybrid slime mold enhanced convergent particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell.

作者信息

Aljaidi Mohammad, Agrawal Sunilkumar P, Parmar Anil, Jangir Pradeep, Trivedi Bhargavi Indrajit, Gulothungan G, Alkoradees Ali Fayez, Jangid Reena, Khishe Mohammad

机构信息

Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa, 13110, Jordan.

Department of Electrical Engineering, Government Engineering College, Gandhinagar, Gujarat, 382028, India.

出版信息

Sci Rep. 2025 Mar 8;15(1):8083. doi: 10.1038/s41598-025-92528-1.

Abstract

High efficiency and eco friendliness, proton exchange membrane fuel cells (PEMFCs) have become a good solution to cleaner energy solutions. However, due to the electrochemical complexity of PEMFCs and the limitations of existing optimization methods, accurately estimating PEMFC parameters to achieve optimal performance is still challenging. In this work, we propose a hybrid optimization algorithm, SCPSO, combining Particle Swarm Optimization with Mixed Mutant Slime Mold to improve precision, consistency, and computational efficiency in PEMFC parameter optimization. Six PEMFC types, BCS 500 W, Nedstack 600 W PS6, SR-12 W, Horizon H-12, Ballard Mark V, and STD 250 W Stack were applied to SCPSO and compared with seven state-of-the-art algorithms, FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, and EGJO. In all cases, SCPSO consistently outperformed all competitors with the lowest mean sum of squared error (SSE) and minimal standard deviation (e.g., [10, 10]), thus confirming its robustness and reliability. Additionally, it demonstrated the lowest number of iterations to reach the optimal solution (less than 200 iterations) and best Friedman Rank (FR = 1), signifying the best optimization to the customer. For instance, in PEMFC1, SCPSO achieved minimal SSE of 0.02549 with negligible variability (Std. = 1.05958E-15) as compared to HFPSO (Std. = 0.001998568) and DETDO (FR = 4). SCPSO's rapid convergence curves, narrow box plot spreads, and precise polarization curves were further validated across all fuel cells. SCPSO was experimentally validated and proved to be reliable with minimal deviations between predicted and experimental voltage and power outputs (e.g., RE = 0.052587% for PEMFC1 and RE = 0.016537% for PEMFC2). The average runtime of SCPSO was 3.05 s, which is faster than alternatives, and still maintains its unparalleled precision. The results of the analyses, fitting the datasets and the convergence curves confirm that the adaptive parameter tuning of SCPSO has significantly improved its performance, resulting in the highest consistency and accuracy with the fastest convergence speed. For PEMFC parameter optimization, results from SCPSO have established it as the algorithm with the strongest precision and stability and fastest computational efficiency. The extension to other energy systems and dynamic real time scenarios will be investigated in future research to enable wider adoption in sustainable energy management.

摘要

质子交换膜燃料电池(PEMFC)具有高效和环保的特点,已成为清洁能源解决方案的良好选择。然而,由于PEMFC的电化学复杂性以及现有优化方法的局限性,准确估计PEMFC参数以实现最佳性能仍然具有挑战性。在这项工作中,我们提出了一种混合优化算法SCPSO,它将粒子群优化与混合变异黏菌算法相结合,以提高PEMFC参数优化的精度、一致性和计算效率。将六种PEMFC类型,即BCS 500W、Nedstack 600W PS6、SR-12W、Horizon H-12、Ballard Mark V和STD 250W电池堆应用于SCPSO,并与七种先进算法FLA、HFPSO、PSOLC、ESMA、LSMA、DETDO和EGJO进行比较。在所有情况下,SCPSO始终优于所有竞争对手,具有最低的均方误差(SSE)总和和最小的标准差(例如,[10, 10]),从而证实了其稳健性和可靠性。此外,它达到最优解所需的迭代次数最少(少于200次迭代),并且Friedman排名最佳(FR = 1),这意味着对客户来说是最佳的优化。例如,在PEMFC1中,与HFPSO(标准差 = 0.001998568)和DETDO(FR = 4)相比,SCPSO实现了最小的SSE为0.02549,且变异性可忽略不计(标准差 = 1.05958E-15)。SCPSO的快速收敛曲线、狭窄的箱线图分布以及精确的极化曲线在所有燃料电池中都得到了进一步验证。SCPSO经过实验验证,证明是可靠的,预测的电压和功率输出与实验值之间的偏差最小(例如,PEMFC1的相对误差RE = 0.052587%,PEMFC2的相对误差RE = 0.016537%)。SCPSO的平均运行时间为3.05秒,比其他方法更快,并且仍然保持其无与伦比的精度。分析结果、数据集拟合和收敛曲线证实,SCPSO的自适应参数调整显著提高了其性能,从而实现了最高的一致性和准确性以及最快的收敛速度。对于PEMFC参数优化,SCPSO的结果使其成为精度最高、稳定性最强且计算效率最快的算法。未来的研究将探讨其在其他能源系统和动态实时场景中的扩展应用,以使其在可持续能源管理中得到更广泛的采用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe7/11890738/48f02c25f61b/41598_2025_92528_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验