Suppr超能文献

同步钙钛矿结晶调控与掩埋界面修饰提高平面无机钙钛矿太阳能电池的稳定性和效率。

Synchronous Perovskite Crystallization Regulation and Buried Interface Modification Improve the Stability and Efficiency of a Planar Inorganic Perovskite Solar Cell.

作者信息

Cheng Long, Song Chunshu, Liu Hanqing, Wang Dongsheng, Meng Fanning, Wang Guiqiang

机构信息

School of Chemistry and Materials, Bohai University, Jinzhou 121003, China.

出版信息

ACS Appl Mater Interfaces. 2025 Mar 19;17(11):17135-17142. doi: 10.1021/acsami.5c01130. Epub 2025 Mar 9.

Abstract

The numerous defects in inorganic perovskites and inferior buried interfaces result in serious nonradiative recombination and energy loss, exacerbating the deterioration of the performance of inorganic perovskite solar cells. Here, we develop a facile strategy to simultaneously improve CsPbIBr perovskite quality by regulating perovskite crystallization and modify the buried interface by forming a 6-aminonicotinic acid (6AA) molecular interlayer through adding 6AA into a CsPbIBr precursor solution. It is found that adding 6AA into the CsPbIBr precursor effectively regulates the crystallization process of CsPbIBr perovskite because 6AA molecules exhibit a strong intermolecular interaction with CsPbIBr precursor components, resulting in forming a compact CsPbIBr perovskite film with improved morphology and decreased defects. Meanwhile, 6AA molecules are pushed downward during the perovskite crystallization process and accumulate at the buried interface to form the 6AA interlayer, which improves the interface contact and enhances the charge transport at the buried interface. The perovskite quality improvement and the buried interface modification effectively decrease the nonradiative recombination and interface charge loss. Consequently, the fabricated planar carbon-based CsPbIBr solar cell demonstrates an efficiency of 10.97% with a remarkably promoted long-term stability.

摘要

无机钙钛矿中的众多缺陷以及较差的掩埋界面导致严重的非辐射复合和能量损失,加剧了无机钙钛矿太阳能电池性能的恶化。在此,我们开发了一种简便的策略,通过调节钙钛矿结晶同时提高CsPbIBr钙钛矿的质量,并通过向CsPbIBr前驱体溶液中添加6-氨基烟酸(6AA)形成6-氨基烟酸分子中间层来修饰掩埋界面。研究发现,向CsPbIBr前驱体中添加6AA可有效调节CsPbIBr钙钛矿的结晶过程,因为6AA分子与CsPbIBr前驱体成分表现出强烈的分子间相互作用,从而形成具有改善形貌和减少缺陷的致密CsPbIBr钙钛矿薄膜。同时,在钙钛矿结晶过程中6AA分子被向下推动并在掩埋界面处聚集形成6AA中间层,这改善了界面接触并增强了掩埋界面处的电荷传输。钙钛矿质量的提高和掩埋界面的修饰有效地减少了非辐射复合和界面电荷损失。因此,制备的平面碳基CsPbIBr太阳能电池表现出10.97%的效率,并且长期稳定性得到显著提高。

相似文献

2
Healing the Buried Interface by a Plant-Derived Green Passivator for Carbon-Based CsPbIBr Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2024 Mar 27;16(12):14974-14983. doi: 10.1021/acsami.4c01876. Epub 2024 Mar 15.
3
Regulating the Film Growth and Reducing the Defects for Efficient CsPbIBr Solar Cells.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24654-24661. doi: 10.1021/acsami.1c02377. Epub 2021 May 19.
4
Nanoconfined Crystallization for High-Efficiency Inorganic Perovskite Solar Cells.
Small Sci. 2021 Jan 15;1(2):2000054. doi: 10.1002/smsc.202000054. eCollection 2021 Feb.
5
Pushing the Limit of Open-Circuit Voltage Deficit via Modifying Buried Interface in CsPbI Perovskite Solar Cells.
Adv Mater. 2023 Feb;35(7):e2207172. doi: 10.1002/adma.202207172. Epub 2022 Dec 20.
6
Promoting the Efficiency and Stability of CsPbIBr-Based All-Inorganic Perovskite Solar Cells through a Functional Cu Doping Strategy.
ACS Appl Mater Interfaces. 2020 May 27;12(21):23984-23994. doi: 10.1021/acsami.0c04938. Epub 2020 May 12.
7
Quantum Dot Interface-Mediated CsPbIBr Film Growth and Passivation for Efficient Carbon-Based Solar Cells.
ACS Appl Mater Interfaces. 2021 Nov 24;13(46):55349-55357. doi: 10.1021/acsami.1c16290. Epub 2021 Nov 11.
8
Buried Interface Modification Toward Efficient CsPbIBr Based Monolithic Perovskite/Organic Tandem Solar Cells.
Small. 2025 Jan;21(3):e2406824. doi: 10.1002/smll.202406824. Epub 2024 Nov 20.
9
Monovalent Copper Cation Doping Enables High-Performance CsPbIBr-Based All-Inorganic Perovskite Solar Cells.
Nanomaterials (Basel). 2022 Dec 5;12(23):4317. doi: 10.3390/nano12234317.
10
Extrinsic Ion Distribution Induced Field Effect in CsPbIBr Perovskite Solar Cells.
Small. 2020 Apr;16(17):e1907283. doi: 10.1002/smll.201907283. Epub 2020 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验