Suppr超能文献

使用双向长短期记忆网络(Bi-LSTM)和多头注意力机制的GATI-RS模型,通过准确的点击率预测来提升老年人的在线购物体验。

GATI-RS model using Bi-LSTM and multi-head attention mechanism to enhance online shopping experience for the elderly with accurate click-through rate prediction.

作者信息

Liu Ying, Abidin Shahriman Zainal, Vermol Verly Veto, Yang Shaolong, Liu Hanyu

机构信息

Faculty of Art & Design, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan, Malaysia.

Zhengzhou Railway Vocational & Technical College, Zhengzhou, China.

出版信息

PeerJ Comput Sci. 2025 Feb 20;11:e2707. doi: 10.7717/peerj-cs.2707. eCollection 2025.

Abstract

With the rapid development of e-commerce and the increasing aging population, more elderly people are engaging in online shopping. However, challenges they face during this process are becoming more apparent. This article proposes a recommendation system based on click-through rate (CTR) prediction, aiming to enhance the online shopping experience for elderly users. By analyzing user characteristics, product features, and their interactions, we constructed a model combining bidirectional long short-term memory (Bi-LSTM) and multi-head self-attention mechanism to predict the item click behavior of elderly users in the recommendation section. Experimental results demonstrated that the model excels in CTR prediction, effectively improving the relevance of recommended content. Compared to the baseline model long short-term memory (LSTM), the GATI-RS framework improved CTR prediction accuracy by 40%, and its loss function rapidly decreased and remained stable during training. Additionally, the GATI-RS framework showed significant performance improvement when considering only elderly users, with accuracy surpassing the baseline model by 42%. These results indicate that the GATI-RS framework, through optimized algorithms, significantly enhances the model's global information integration and complex pattern recognition capabilities, providing strong support for developing recommendation systems for elderly online shoppers. This research not only offers new insights for e-commerce platforms to optimize services but also contributes to improving the quality of life and well-being of the elderly.

摘要

随着电子商务的快速发展和人口老龄化的加剧,越来越多的老年人开始参与网购。然而,他们在这个过程中面临的挑战也日益凸显。本文提出了一种基于点击率(CTR)预测的推荐系统,旨在提升老年用户的网购体验。通过分析用户特征、产品特性及其交互行为,我们构建了一个结合双向长短期记忆(Bi-LSTM)和多头自注意力机制的模型,以预测老年用户在推荐板块中的商品点击行为。实验结果表明,该模型在CTR预测方面表现出色,有效提高了推荐内容的相关性。与基线模型长短期记忆(LSTM)相比,GATI-RS框架将CTR预测准确率提高了40%,其损失函数在训练过程中迅速下降并保持稳定。此外,在仅考虑老年用户时,GATI-RS框架表现出显著的性能提升,准确率超过基线模型42%。这些结果表明,GATI-RS框架通过优化算法,显著增强了模型的全局信息整合和复杂模式识别能力,为开发老年网购者推荐系统提供了有力支持。本研究不仅为电子商务平台优化服务提供了新的思路,也有助于提升老年人的生活质量和幸福感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e806/11888906/2a1bd4d063c3/peerj-cs-11-2707-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验