Swanson Hamish W A, Barriales Kenny, Sherman Emmet A, Li Tai-De, Kennedy Alan R, Tuttle Tell, Ulijn Rein V, Lau King Hang Aaron
Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
Nanoscience Initiative at Advanced Science Research Center, The Graduate Center, The City University of New York, 85 Saint Nicholas Terrace, New York, New York 10031, United States.
Langmuir. 2025 Mar 25;41(11):7376-7385. doi: 10.1021/acs.langmuir.4c04718. Epub 2025 Mar 11.
We report the discovery and in-depth investigation of interfacial crystallization (IFC), the assembly and formation of membrane-like crystalline sheets from both chiral amino acid and achiral -substituted glycine "peptoid" amide monomers selectively at vapor-liquid and liquid-liquid interfaces. This is the first assembly process known to be shared by two peptidomimic families of molecules with crucial backbone differences. A series of AFM, SEM, TOF-SIMS, FTIR, X-ray crystallography, counterion screening experiments, QM calculations, and MD simulation studies identified that IFC is based on the assembly of single monomer layers with alternating molecular orientations, which results in bilayers of unit thickness 1.2-1.6 nm consisting of internal hydrophobic planes and ionic interfaces cocrystallized with halide salt ions. The assembly is underpinned by, paradoxically, the dynamic freedom of attached side chains, especially those of aliphatic designs. Growth of these bilayers then fills entire interfaces, limited only by the size of the container. The fundamental observation of the interface-filling nanostructures and the simplicity of the monomer chemistry involved suggest that IFC may have applications in the convenient formation of interface-sealing supramolecular barriers and, more broadly, tunable 2D layered materials.
我们报告了界面结晶(IFC)的发现及深入研究,即手性氨基酸和非手性α-取代甘氨酸“类肽”酰胺单体在气-液和液-液界面选择性地组装并形成膜状晶体片层。这是已知的首个由两个具有关键主链差异的肽模拟分子家族共享的组装过程。一系列原子力显微镜(AFM)、扫描电子显微镜(SEM)、飞行时间二次离子质谱(TOF-SIMS)、傅里叶变换红外光谱(FTIR)、X射线晶体学、抗衡离子筛选实验、量子力学(QM)计算和分子动力学(MD)模拟研究表明,IFC基于具有交替分子取向的单分子层组装,这导致形成厚度为1.2 - 1.6 nm的双层结构,其由内部疏水平面和与卤化物盐离子共结晶的离子界面组成。矛盾的是,这种组装的基础是连接侧链的动态自由度,尤其是脂肪族设计的侧链。这些双层结构的生长随后填充整个界面,仅受容器大小限制。对界面填充纳米结构的基本观察以及所涉及单体化学的简单性表明,IFC可能在方便地形成界面密封超分子屏障以及更广泛地在可调二维层状材料方面有应用。