Suppr超能文献

探索预测干扰素-γ释放的多种方法:利用MHC II类分子和肽序列

Exploring diverse approaches for predicting interferon-gamma release: utilizing MHC class II and peptide sequences.

作者信息

Omran Abir, Amberg Alexander, Ecker Gerhard F

机构信息

Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Sanofi, Preclinical Safety, Industriepark Höchst, 65926 Frankfurt am Main, Germany.

出版信息

Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf101.

Abstract

Therapeutic proteins are in high demand due to their significant potential, driving continuous market growth. However, a critical concern for therapeutic proteins is their ability to trigger an immune response, while some treatments rely on this response for their therapeutic effect. Therefore, to assess the efficacy and safety of the drug, it is pivotal to determine its immunogenicity potential. Various experimental methods, such as cytokine release or T-cell proliferation assays, are used for this purpose. However, these assays can be costly, time-consuming, and often limited in their ability to screen large peptide sets across diverse major histocompatibility complex (MHC) alleles. Hence, this study aimed to develop a computational classification model for predicting the release of interferon-gamma based on the peptide sequence and the MHC class II (MHC-II) allele pseudo-sequence, which represents the binding environment of the MHC-II molecule. The dataset used in this study was obtained from the Immune Epitope Database and labeled as active or inactive. Among the approaches explored, the random forest algorithm combined with letter-based encoding resulted in the overall best-performing model. Consequently, this model's generalizability to other T-cell activities was further evaluated using a T-cell proliferation dataset. Furthermore, feature importance analysis and virtual single-point mutations were conducted to gain insights into the model's decision-making and to improve the interpretability of the model.

摘要

治疗性蛋白质因其巨大潜力而需求旺盛,推动着市场持续增长。然而,治疗性蛋白质的一个关键问题是其引发免疫反应的能力,而一些治疗依赖这种反应来发挥治疗效果。因此,为评估药物的疗效和安全性,确定其免疫原性潜力至关重要。为此使用了各种实验方法,如细胞因子释放或T细胞增殖测定。然而,这些测定可能成本高昂、耗时,并且在筛选跨不同主要组织相容性复合体(MHC)等位基因的大肽集时能力往往有限。因此,本研究旨在基于肽序列和代表MHC-II分子结合环境的MHC-II类(MHC-II)等位基因伪序列,开发一种用于预测干扰素-γ释放的计算分类模型。本研究中使用的数据集来自免疫表位数据库,并标记为活性或非活性。在所探索的方法中,结合基于字母编码的随机森林算法产生了总体表现最佳的模型。因此,使用T细胞增殖数据集进一步评估了该模型对其他T细胞活性的通用性。此外,进行了特征重要性分析和虚拟单点突变,以深入了解模型的决策过程并提高模型的可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4523/11894801/d8ef17bd47a0/bbaf101ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验