Suppr超能文献

Formulation and development of ACUPA-targeting PEGylated nanoliposomes for treatment of prostate cancer.

作者信息

Moosavian Seyedeh Alia, Amin Mohamad Reza, Alavizadeh Seyedeh Hoda, Jaafari Mahmoud Reza, Kesharwani Prashant, Sahebkar Amirhossein

机构信息

Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.

Laboratory Experimental Oncology, Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus University Medical Center, Rotterdam 3015 GD, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus University Medical Center, Rotterdam 3015 GD, the Netherlands.

出版信息

Tissue Cell. 2025 Aug;95:102830. doi: 10.1016/j.tice.2025.102830. Epub 2025 Mar 4.

Abstract

A promising strategy for improving the effectiveness, specificity and safety of cancer treatment is targeted medication delivery. Prostate-specific membrane antigen (PSMA) is an effective biomarker for tracking and treating prostate cancer. In this study, we developed a PSMA-targeted drug delivery system by modifying PEGylated liposomal doxorubicin (PLD) with 2-(3-((S)-5-amino-1-carboxypentyl) ureido) pentanedioic acid (ACUPA), a small-molecule PSMA inhibitor, to enhance tumor targeting and therapeutic outcomes. The physicochemical characterization of ACUPA-functionalized PLD (ACUPA-PLD) confirmed successful conjugation, with a slight increase in particle size and a minor decrease in surface charge compared to unmodified PLD. In vitro studies demonstrated that ACUPA-PLD exhibited significantly enhanced cellular uptake and cytotoxicity in PSMA-expressing LNCaP prostate cancer cells compared to non-targeted PLD, whereas PSMA-negative PC3 cells showed no significant difference in uptake or cytotoxicity. Flow cytometry and fluorescence-based assays confirmed PSMA-mediated internalization of ACUPA-PLD. In vivo biodistribution studies in a LNCaP xenograft nude mouse model revealed that ACUPA-PLD accumulated preferentially in tumor tissues. Pharmacokinetic analysis indicated that ACUPA functionalization slightly reduced the half-life of PLD without significantly altering its clearance profile. Chemotherapy studies demonstrated that ACUPA-PLD exhibited superior tumor growth inhibition compared to non-targeted PLD, supporting the potential of ACUPA-mediated targeting to improve the therapeutic index of liposomal chemotherapy. These findings suggest that ACUPA-functionalized liposomes represent a promising approach for PSMA-targeted prostate cancer therapy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验