Suppr超能文献

利用微生物组特征预测子宫内膜癌患者的肿瘤免疫微环境和预后。

Leveraging microbiome signatures to predict tumor immune microenvironment and prognosis of patients with endometrial carcinoma.

作者信息

Yang Yuting, Meng Yuchen, Xu Ziyang, Zhang Qin, Li Miaomiao, Kong Fanbing, Zhang Suping, Li Xinling, Zhu Yihua

机构信息

Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.

出版信息

Discov Oncol. 2025 Mar 12;16(1):299. doi: 10.1007/s12672-025-02038-9.

Abstract

Recent studies suggest that the human microbiome influence tumor development. Endometrial carcinoma (EC) is the sixth most common malignancy in women. Recent research has demonstrated the microbes play a critical role in the development and metastasis of EC. However, it remains unclear whether intratumoral microbes are associated with tumor microenvironment (TME) and prognosis of EC. In this study, we collected the EC microbiome data from cBioPortal and constructed a prognostic model based on Resident Microbiome of Endometrium (RME). We then examined the relationship between the RME score, immune cell infiltration, immunotherapy-related signature, and prognosis. The findings demonstrated the independent prognostic value of the RME score for EC. The group with low RME scores had higher enrichment of immune cells. Drug sensitivity analysis revealed that the RME score may serve as a potential predictor of chemotherapy efficacy. In conclusion, our research offers new perspectives on the relationships between tumor immunity and microbes.

摘要

最近的研究表明,人类微生物组会影响肿瘤的发展。子宫内膜癌(EC)是女性中第六大最常见的恶性肿瘤。最近的研究表明,微生物在EC的发生和转移中起关键作用。然而,肿瘤内微生物是否与EC的肿瘤微环境(TME)和预后相关仍不清楚。在本研究中,我们从cBioPortal收集了EC微生物组数据,并基于子宫内膜常驻微生物组(RME)构建了一个预后模型。然后,我们研究了RME评分、免疫细胞浸润、免疫治疗相关特征与预后之间的关系。研究结果证明了RME评分对EC具有独立的预后价值。RME评分低的组免疫细胞富集程度更高。药物敏感性分析表明,RME评分可能作为化疗疗效的潜在预测指标。总之,我们的研究为肿瘤免疫与微生物之间的关系提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d132/11896907/01d0f915b428/12672_2025_2038_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验