Ye Xiaoxing, Sahana Goutam, Lund Mogens Sandø, Li Bingjie, Cai Zexi
Center for Quantitative Genetics and Genomics, Aarhus University, CF Møllers Allé 3, 8000, Aarhus, Denmark.
Department of Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK.
Anim Microbiome. 2025 Mar 11;7(1):24. doi: 10.1186/s42523-025-00386-z.
Methane emissions from livestock, particularly from dairy cattle, represent a significant source of greenhouse gas, contributing to the global climate crisis. Understanding the complex interactions within the rumen microbiota that influence methane emissions is crucial for developing effective mitigation strategies.
This study employed Weighted Gene Co-expression Network Analysis to investigate the complex interactions within the rumen microbiota that influence methane emissions. By integrating extensive rumen microbiota sequencing data with precise methane emission measurements in 750 Holstein dairy cattle, our research identified distinct microbial communities and their associations with methane production. Key findings revealed that the blue module from network analysis was significantly correlated (0.45) with methane emissions. In this module, taxa included the genera Prevotella and Methanobrevibactor, along with species such as Prevotella brevis, Prevotella ruminicola, Prevotella baroniae, Prevotella bryantii, Lachnobacterium bovis, and Methanomassiliicoccus luminyensis are the key components to drive the complex networks. However, the absence of metagenomics sequencing is difficult to reveal the deeper taxa level and functional profiles.
The application of Weighted Gene Co-expression Network Analysis provided a comprehensive understanding of the microbiota-methane emission relationship, serving as an innovative approach for microbiota-phenotype association studies in cattle. Our findings underscore the importance of microbiota-trait and microbiota-microbiota associations related to methane emission in dairy cattle, contributing to a systematic understanding of methane production in cattle. This research offers key information on microbial management for mitigating environmental impact on the cattle population.
家畜尤其是奶牛的甲烷排放是温室气体的重要来源,对全球气候危机有影响。了解瘤胃微生物群中影响甲烷排放的复杂相互作用对于制定有效的减排策略至关重要。
本研究采用加权基因共表达网络分析来研究瘤胃微生物群中影响甲烷排放的复杂相互作用。通过将750头荷斯坦奶牛广泛的瘤胃微生物群测序数据与精确的甲烷排放测量数据相结合,我们的研究确定了不同的微生物群落及其与甲烷产生的关联。主要发现表明,网络分析中的蓝色模块与甲烷排放显著相关(0.45)。在这个模块中,分类群包括普雷沃氏菌属和甲烷短杆菌属,以及诸如短普雷沃氏菌、瘤胃普雷沃氏菌、巴罗尼亚普雷沃氏菌、布氏普雷沃氏菌、牛乳酸杆菌和鲁米尼甲烷球菌等物种是驱动复杂网络的关键组成部分。然而,缺乏宏基因组测序难以揭示更深层次的分类群水平和功能概况。
加权基因共表达网络分析的应用提供了对微生物群与甲烷排放关系的全面理解,是牛群中微生物群与表型关联研究的一种创新方法。我们的研究结果强调了与奶牛甲烷排放相关的微生物群与性状以及微生物群与微生物群关联的重要性,有助于系统地理解奶牛的甲烷产生。这项研究提供了关于微生物管理的关键信息,以减轻对牛群的环境影响。