Bardouil Arnaud, Bizien Thomas, Amiaud Jérome, Fautrel Alain, Battaglia Séverine, Almarouk Iman, Rouxel Tanguy, Panizza Pascal, Perez Javier, Last Arndt, Djediat Chakib, Bessot Elora, Nassif Nadine, Rédini Françoise, Artzner Franck
CNRS, Institut de Physique de Rennes (IPR), UMR 6251, Université de Rennes, 35000 Rennes, France.
Synchrotron SOLEIL, L'Orme des Merisiers, 91190 Saint-Aubin, France.
Nanomaterials (Basel). 2025 Feb 28;15(5):374. doi: 10.3390/nano15050374.
Osteosarcoma is medically defined as a bone-forming tumor with associated bone-degrading activity. There is a lack of knowledge about the network that generates the overproduction of bone. We studied the early stage of osteosarcoma development with mice enduring a periosteum injection of osteosarcoma cells at the proximal third of the tibia. On day 7 (D7), tumor cells activate the over-synthesis of bone-like material inside the medulla. This overproduction of bone is quickly (D13) followed by degradation. Samples were characterized by microfocus small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), optical and electron microscopies, and micro-indentation. This intramedullary apatite-collagen composite synthesis highlights an unknown network of bone synthesis stimulation by extramedullary osteosarcoma cells. This synthesis activation mechanism, coupled with the well-known bone induced osteosarcoma growth activation, produces a rare synergy that may enlighten the final osteosarcoma morphology. With this aim, a 3D cellular automaton was developed that only included two rules. Simulations can accurately reproduce the bi-continuous sponge macroscopic structure that was analyzed from mice tumor micro-tomography. This unknown tumor activation pathway of bone synthesis, combined with the known bone activation of tumor growth, generates a positive feedback synergy explaining the unusual sponge-like morphology of this bone cancer. From a biomaterials point of view, how nature controls self-assembly processes remains an open question. Here, we show how the synergy between two biological growth processes is responsible for the complex morphology of a bone tumor. This highlights how hierarchical morphologies, accurately defined from the nanometer to the centimeter scale, can be controlled by positive feedback between the self-assembly of a scaffold and the deposition of solid material.
骨肉瘤在医学上被定义为一种具有相关骨降解活性的成骨肿瘤。目前对于导致骨过度生成的网络尚缺乏了解。我们通过在小鼠胫骨近端三分之一处进行骨膜注射骨肉瘤细胞,研究了骨肉瘤发展的早期阶段。在第7天(D7),肿瘤细胞激活了骨髓腔内类骨质材料的过度合成。这种骨的过度生成很快(D13)就会伴随着降解。通过微聚焦小角X射线散射(SAXS)、广角X射线散射(WAXS)、光学和电子显微镜以及微压痕对样本进行了表征。这种骨髓内磷灰石 - 胶原蛋白复合材料的合成突出了髓外骨肉瘤细胞刺激骨合成的未知网络。这种合成激活机制,再加上众所周知的骨诱导骨肉瘤生长激活,产生了一种罕见的协同作用,这可能会揭示最终的骨肉瘤形态。为此,开发了一种仅包含两条规则的三维细胞自动机。模拟能够准确再现从小鼠肿瘤显微断层扫描分析得到的双连续海绵状宏观结构。这种未知的骨合成肿瘤激活途径,与已知的肿瘤生长骨激活相结合,产生了一种正反馈协同作用,解释了这种骨癌不寻常的海绵状形态。从生物材料的角度来看,自然如何控制自组装过程仍然是一个悬而未决的问题。在这里,我们展示了两个生物生长过程之间的协同作用如何导致骨肿瘤的复杂形态。这突出了从纳米到厘米尺度精确界定的层次形态如何能够通过支架自组装和固体材料沉积之间的正反馈来控制。