Xu Yuping, Ren Mingming, Deng Runzhi, Meng Jiajia, Xu Lingxia, Zhao Wenbo, Ni Yanhong, Mao Chun, Zhang Shirong
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Nanjing Stomatological Hospital, Affliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
Adv Healthc Mater. 2025 Apr;14(11):e2404215. doi: 10.1002/adhm.202404215. Epub 2025 Mar 12.
Due to the complexity of the tumor microenvironment (TME), current tumor treatments cannot achieve satisfactory results. A nanocomposite material, UCNPs@PVP-Hemin-GOx@CaCO (UPHGC NPs) is developed that responds to the TME and controls release to achieve multimodal synergistic therapy in tumor tissues. UPHGC NPs mediate photodynamic therapy (PDT), chemodynamic therapy (CDT), and starvation therapy (ST) synergistically, ultimately inducing self-amplification of ferroptosis. The Hemin loaded in UPHGC NPs exhibits peroxidase (POD) activity, which can react with HO to produce ·OH (CDT) and generate the maximum amount of ·O (PDT) under UV excitation from upconversion materials. Hemin can also consume glutathione (GSH), downregulate glutathione peroxidase 4 (GPX4), and combine with PDT/CDT to induce lipid peroxidation (LPO), leading to ferroptosis. In addition, Glucose oxidase (GOx) provides sufficient HO for the ·OH production, amplifying ROS generation to further enhance ferroptosis. The gluconic acid produced by GOx during the ST process synergizes with the TME's acidic conditions to promote Ca release, induce intracellular calcium overload, enhance oxidative stress, lead to mitochondrial dysfunction, and ultimately kill tumor cells through mitochondrial damage. Furthermore, the externally mineralized calcium carbonate can prevent premature drug release in normal tissues.
由于肿瘤微环境(TME)的复杂性,目前的肿瘤治疗无法取得令人满意的效果。一种纳米复合材料UCNPs@PVP-Hemin-GOx@CaCO(UPHGC NPs)被开发出来,它能对TME做出响应并控制释放,以在肿瘤组织中实现多模态协同治疗。UPHGC NPs协同介导光动力疗法(PDT)、化学动力疗法(CDT)和饥饿疗法(ST),最终诱导铁死亡的自我放大。负载在UPHGC NPs中的血红素具有过氧化物酶(POD)活性,它可以与HO反应生成·OH(CDT),并在来自上转换材料的紫外激发下产生最大量的·O (PDT)。血红素还可以消耗谷胱甘肽(GSH),下调谷胱甘肽过氧化物酶4(GPX4),并与PDT/CDT结合诱导脂质过氧化(LPO),导致铁死亡。此外,葡萄糖氧化酶(GOx)为·OH的产生提供足够的HO,放大ROS的生成以进一步增强铁死亡。GOx在ST过程中产生的葡萄糖酸与TME的酸性条件协同作用,促进Ca释放,诱导细胞内钙超载,增强氧化应激,导致线粒体功能障碍,并最终通过线粒体损伤杀死肿瘤细胞。此外,外部矿化的碳酸钙可以防止药物在正常组织中过早释放。