Wang Tiantian, Karel Joël M H, Osnabrugge Niels, Driessens Kurt, Stoks Job, Cluitmans Matthijs J M, Volders Paul G A, Bonizzi Pietro, Peeters Ralf L M
Department of Advanced Computing Sciences, Maastricht University, The Netherlands.
Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
Artif Intell Med. 2025 May;163:103093. doi: 10.1016/j.artmed.2025.103093. Epub 2025 Mar 5.
Electrocardiographic imaging (ECGI) aims to noninvasively estimate heart surface potentials starting from body surface potentials. This is classically based on geometric information on the torso and the heart from imaging, which complicates clinical application. In this study, we aim to develop a deep learning framework to estimate heart surface potentials solely from body surface potentials, enabling wider clinical use. The framework introduces two main components: the transformation of 3D torso and heart geometries into standard 2D representations, and the development of a customized deep learning network model. The 2D torso and heart representations maintain a consistent layout across different subjects, making the proposed framework applicable to different torso-heart geometries. With spatial information incorporated in the 2D representations, the torso-heart physiological relationship can be learnt by the network. The deep learning model is based on a Pix2Pix network, adapted to work with 2.5D data in our task, i.e., 2D body surface potential maps (BSPMs) and 2D heart surface potential maps (HSPMs) with time sequential information. We propose a new loss function tailored to this specific task, which uses a cosine similarity and different weights for different inputs. BSPMs and HSPMs from 11 healthy subjects (8 females and 3 males) and 29 idiopathic ventricular fibrillation (IVF) patients (11 females and 18 males) were used in this study. Performance was assessed on a test set by measuring the similarity and error between the output of the proposed model and the solution provided by mainstream ECGI, by comparing HSPMs, the concatenated electrograms (EGMs), and the estimated activation time (AT) and recovery time (RT). The mean of the mean absolute error (MAE) for the HSPMs was 0.012 ± 0.011, and the mean of the corresponding structural similarity index measure (SSIM) was 0.984 ± 0.026. The mean of the MAE for the EGMs was 0.004 ± 0.004, and the mean of the corresponding Pearson correlation coefficient (PCC) was 0.643 ± 0.352. Results suggest that the model is able to precisely capture the structural and temporal characteristics of the HSPMs. The mean of the absolute time differences between estimated and reference activation times was 6.048 ± 5.188 ms, and the mean of the absolute differences for recovery times was 18.768 ± 17.299 ms. Overall, results show similar performance between the proposed model and standard ECGI, exhibiting low error and consistent clinical patterns, without the need for CT/MRI. The model shows to be effective across diverse torso-heart geometries, and it successfully integrates temporal information in the input. This in turn suggests the possible use of this model in cost effective clinical scenarios like patient screening or post-operative follow-up.
心电图成像(ECGI)旨在从体表电位无创估计心脏表面电位。传统方法基于成像获得的躯干和心脏的几何信息,这使得临床应用变得复杂。在本研究中,我们旨在开发一种深度学习框架,仅从体表电位估计心脏表面电位,以实现更广泛的临床应用。该框架引入了两个主要组件:将3D躯干和心脏几何形状转换为标准2D表示,以及开发定制的深度学习网络模型。2D躯干和心脏表示在不同受试者之间保持一致的布局,使所提出的框架适用于不同的躯干-心脏几何形状。通过在2D表示中纳入空间信息,网络可以学习躯干-心脏的生理关系。深度学习模型基于Pix2Pix网络,并针对我们任务中的2.5D数据进行了调整,即具有时间序列信息的2D体表电位图(BSPM)和2D心脏表面电位图(HSPM)。我们提出了一种针对此特定任务量身定制的新损失函数,该函数对不同输入使用余弦相似度和不同权重。本研究使用了11名健康受试者(8名女性和3名男性)以及29名特发性室颤(IVF)患者(11名女性和18名男性)的BSPM和HSPM。通过测量所提出模型的输出与主流ECGI提供的解决方案之间的相似度和误差,比较HSPM、拼接的心电图(EGM)以及估计的激活时间(AT)和恢复时间(RT),在测试集上评估性能。HSPM的平均平均绝对误差(MAE)为0.012±0.011,相应的结构相似性指数测量(SSIM)的平均值为0.984±0.026。EGM的MAE平均值为0.004±0.004,相应的皮尔逊相关系数(PCC)的平均值为0.643±0.352。结果表明该模型能够精确捕捉HSPM的结构和时间特征。估计的激活时间与参考激活时间之间的绝对时间差平均值为6.048±5.188毫秒,恢复时间的绝对差平均值为18.768±17.299毫秒。总体而言,结果表明所提出的模型与标准ECGI之间具有相似的性能,表现出低误差和一致的临床模式,无需CT/MRI。该模型在不同的躯干-心脏几何形状中均有效,并且成功地在输入中整合了时间信息。这进而表明该模型可能用于诸如患者筛查或术后随访等具有成本效益的临床场景。