Suppr超能文献

用于实用锌阳极的仿生局部凝胶电解质。

Biomimetic Localized Gel Electrolyte for Practical Zinc Anode.

作者信息

Zhu Yibo, Gao Shengyong, Zhang Shuangbin, Chen Yang, Liu Peng, Meng Haotian, Luo Zhiruo, Chen Xuan, Wen Zhenhai, Wang Lina, Wang Lianzhou, Luo Bin, Zhou Jisheng

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials Technology, National Engineering Research Center for Fuel Cell and Hydrogen Source, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.

Australia Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.

出版信息

Angew Chem Int Ed Engl. 2025 May;64(21):e202501664. doi: 10.1002/anie.202501664. Epub 2025 Mar 22.

Abstract

Incompatible electrode/electrolyte interface often leads to dendrite growth, parasitic reactions, and corrosion, posing significant challenges to the application of Zn anodes. Herein, we introduce a biomimetic antifreeze protein localized gel electrolyte (ALGE) with multifunctional capabilities to address these issues by combining electrolyte modification with interface optimization. ALGE modifies the Zn solvation structure and the hydrogen-bond network adjacent to the zinc anode, effectively suppressing hydrogen evolution. Additionally, ALGE promotes (002) crystal plane-dominated deposition by protein-zinc surface interactions, enabling a long-range dendrite-free deposition. The absence of by-products and inhibited corrosion further highlights the practical potential of ALGE. Symmetric cells with ALGE-modified zinc demonstrate an impressive lifespan of 610  h under a current density of 10 mA cm and a capacity of 10 mAh cm. The pouch cell integrating a manganese dioxide cathode and ALGE-modified Zn anode retains 75.8% of its capacity after 200 cycles at 1 A g. This localized gel electrolyte strategy offers a practical and scalable approach to stabilizing Zn anodes for next-generation energy storage systems.

摘要

不相容的电极/电解质界面常常会导致枝晶生长、寄生反应和腐蚀,这给锌负极的应用带来了重大挑战。在此,我们引入了一种具有多功能的仿生抗冻蛋白局部凝胶电解质(ALGE),通过将电解质改性与界面优化相结合来解决这些问题。ALGE改变了锌的溶剂化结构以及锌负极附近的氢键网络,有效抑制了析氢反应。此外,ALGE通过蛋白质与锌表面的相互作用促进以(002)晶面为主的沉积,实现了无长程枝晶的沉积。没有副产物以及抑制了腐蚀进一步凸显了ALGE的实际应用潜力。采用ALGE改性锌的对称电池在电流密度为10 mA cm²、容量为10 mAh cm²的条件下展现出令人印象深刻的610小时的寿命。集成二氧化锰正极和ALGE改性锌负极的软包电池在1 A g的电流密度下循环200次后仍保留其75.8%的容量。这种局部凝胶电解质策略为稳定下一代储能系统中的锌负极提供了一种实用且可扩展的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcb/12087840/ce63d18cb82f/ANIE-64-e202501664-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验