Hong Yu-Ting, Yu Zi-Han, Chou Chen-Pin
Radiology Department, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan.
Department of Radiology, Jiannren Hospital, Kaohsiung 813414, Taiwan.
Diagnostics (Basel). 2025 Feb 26;15(5):560. doi: 10.3390/diagnostics15050560.
This study evaluated the diagnostic performance of the S-Detect ultrasound system's three selectable AI modes-high-sensitivity (HSe), high-accuracy (HAc), and high-specificity (HSp)-for breast lesion diagnosis, comparing their performance in a clinical setting. This retrospective analysis evaluated 260 breast lesions from ultrasound images of 232 women (mean age: 50.2 years) using the S-Detect system. Each lesion was analyzed under the HSe, HAc, and HSp modes. The study employed ROC curve analysis to comprehensively compare the diagnostic performance of the AI modes against radiologist diagnoses. Subgroup analyses focused on the age (<45, 45-55, >55 years) and lesion size (<1 cm, 1-2 cm, >2 cm). Among the 260 lesions, 73% were identified as benign and 27% as malignant. Radiologists achieved a sensitivity of 98.6%, specificity of 64.2%, and accuracy of 73.5%. The HSe mode exhibited the highest sensitivity at 95.7%. The HAc mode excelled with the highest accuracy (86.2%) and positive predictive value (71.3%), while the HSp mode had the highest specificity at 95.8%. In the age-based subgroup analyses, the HAc mode consistently showed the highest area under the curve (AUC) across all categories. The HSe mode achieved the highest AUC (0.726) for lesions smaller than 1 cm. In the case of lesions sized 1-2 cm and larger than 2 cm, the HAc mode showed the highest AUCs of 0.906 and 0.776, respectively. The S-Detect HSe mode matches radiologists' performance. Alternative modes provide sensitivity and specificity adjustments. The patient age and lesion size influence the diagnostic performance across all S-Detect modes.
本研究评估了S-Detect超声系统的三种可选人工智能模式——高灵敏度(HSe)、高精度(HAc)和高特异性(HSp)——对乳腺病变诊断的性能,并在临床环境中比较了它们的表现。这项回顾性分析使用S-Detect系统评估了232名女性(平均年龄:50.2岁)超声图像中的260个乳腺病变。每个病变在HSe、HAc和HSp模式下进行分析。该研究采用ROC曲线分析来全面比较人工智能模式与放射科医生诊断的诊断性能。亚组分析聚焦于年龄(<45岁、45-55岁、>55岁)和病变大小(<1 cm、1-2 cm、>2 cm)。在260个病变中,73%被确定为良性,27%为恶性。放射科医生的灵敏度为98.6%,特异性为64.2%,准确率为73.5%。HSe模式的灵敏度最高,为95.7%。HAc模式的准确率(86.2%)和阳性预测值(71.3%)最高,而HSp模式的特异性最高,为95.8%。在基于年龄的亚组分析中,HAc模式在所有类别中始终显示出最高的曲线下面积(AUC)。对于小于1 cm的病变,HSe模式的AUC最高(0.726)。对于大小为1-2 cm和大于2 cm的病变,HAc模式的AUC分别最高,为0.906和0.776。S-Detect HSe模式与放射科医生的表现相当。其他模式可进行灵敏度和特异性调整。患者年龄和病变大小会影响所有S-Detect模式的诊断性能。