Suppr超能文献

诊断性乳腺超声中的人工智能:不同专业水平放射科医生决策支持的比较分析

Artificial Intelligence in Diagnostic Breast Ultrasound: A Comparative Analysis of Decision Support Among Radiologists With Various Levels of Expertise.

作者信息

Çelebi Filiz, Tuncer Onur, Oral Müge, Duymaz Tomris, Orhan Tolga, Ertaş Gökhan

机构信息

Department of Radiology, Yeditepe University Faculty of Medicine, İstanbul, Turkey.

Department of Physiotherapy and Rehabilitation, İstanbul Bilgi University Faculty of Health Sciences, İstanbul, Turkey.

出版信息

Eur J Breast Health. 2025 Jan 1;21(1):33-39. doi: 10.4274/ejbh.galenos.2024.2024-9-7.

Abstract

OBJECTIVE

To investigate integrating an artificial intelligence (AI) system into diagnostic breast ultrasound (US) for improved performance.

MATERIALS AND METHODS

Seventy suspicious breast mass lesions (53 malignant and 17 benign) from seventy women who underwent diagnostic breast US complemented with shear wave elastography, US-guided core needle biopsy and verified histopathology were enrolled. Two radiologists, one with 15 years of experience and the other with one year of experience, evaluated the images for breast imaging-reporting and data system (BI-RADS) scoring. The less-experienced radiologist re-evaluated the images with the guidance of a commercial AI system and the maximum elasticity from shear wave elastography. The BI-RADS scorings were processed to determine diagnostic performance and malignancy detections.

RESULTS

The experienced reader demonstrated superior performance with an area under the curve (AUC) of 0.888 [95% confidence interval (CI): 0.793-0.983], indicating high diagnostic accuracy. In contrast, the Koios decision support (DS) system achieved an AUC of 0.693 (95% CI: 0.562-0.824). The less-experienced reader, guided by both Koios and elasticity, showed an AUC of 0.679 (95% CI: 0.534-0.823), while Koios alone resulted in an AUC of 0.655 (95% CI: 0.512-0.799). Without any guidance, the less-experienced reader exhibited the lowest performance, with an AUC of 0.512 (95% CI: 0.352-0.672). The experienced reader had a sensitivity of 98.1%, specificity of 58.8%, positive predictive value of 88.1%, negative predictive value of 90.9%, and overall accuracy of 88.6%. The Koios DS showed a sensitivity of 92.5%, specificity of 35.3%, and an accuracy of 78.6%. The less-experienced reader, when guided by both Koios and elasticity, achieved a sensitivity of 92.5%, specificity of 23.5%, and an accuracy of 75.7%. When guided by Koios alone, the less-experienced reader had a sensitivity of 90.6%, specificity of 17.6%, and an accuracy of 72.9%. Lastly, the less-experienced reader without any guidance showed a sensitivity of 84.9%, specificity of 17.6%, and an accuracy of 68.6%.

CONCLUSION

Diagnostic evaluation of the suspicious masses on breast US images largely depends on experience, with experienced readers showing good performances. AI-based guidance can help improve lower performances, and using the elasticity metric may further improve the performances of less experienced readers. This type of guidance may reduce unnecessary biopsies by increasing the detection rate for malignant lesions and deliver significant benefits for routine clinical practice in underserved areas where experienced readers may not be available.

摘要

目的

研究将人工智能(AI)系统整合到乳腺超声(US)诊断中以提高其性能。

材料与方法

纳入70例接受乳腺诊断性超声检查并辅以剪切波弹性成像、超声引导下粗针穿刺活检及病理组织学检查确诊的女性患者,共70个可疑乳腺肿块病变(53个恶性,17个良性)。两名放射科医生,一名有15年经验,另一名有1年经验,对乳腺影像报告和数据系统(BI-RADS)评分的图像进行评估。经验较少的放射科医生在商业AI系统和剪切波弹性成像的最大弹性值指导下重新评估图像。对BI-RADS评分进行处理以确定诊断性能和恶性病变检测情况。

结果

经验丰富的阅片者表现出色,曲线下面积(AUC)为0.888[95%置信区间(CI):0.793 - 0.983],表明诊断准确性高。相比之下,Koios决策支持(DS)系统的AUC为0.693(95%CI:0.562 - 0.824)。在Koios和弹性值的指导下经验较少的阅片者AUC为0.679(95%CI:0.534 - 0.823),而仅使用Koios时AUC为0.655(95%CI:0.512 - 0.799)。在没有任何指导的情况下,经验较少的阅片者表现最差,AUC为0.512(95%CI:0.352 - 0.672)。经验丰富的阅片者敏感性为98.1%,特异性为58.8%,阳性预测值为88.1%,阴性预测值为90.9%,总体准确率为88.6%。Koios DS系统敏感性为92.5%,特异性为35.3%,准确率为78.6%。在Koios和弹性值指导下经验较少的阅片者敏感性为92.5%,特异性为23.5%,准确率为75.7%。仅在Koios指导下,经验较少的阅片者敏感性为90.6%,特异性为17.6%,准确率为72.9%。最后,没有任何指导的经验较少的阅片者敏感性为84.9%,特异性为17.6%,准确率为68.6%。

结论

乳腺超声图像上可疑肿块的诊断评估很大程度上取决于经验,经验丰富的阅片者表现良好。基于AI的指导有助于提高较低的诊断性能,使用弹性指标可能进一步提高经验较少阅片者的性能。这种指导方式可能通过提高恶性病变的检出率减少不必要的活检,并为缺乏经验丰富阅片者的服务不足地区的常规临床实践带来显著益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eae2/11706116/cebedd521fcb/EurJBreastHealth-21-33-figure-1.jpg

相似文献

3
Should We Ignore, Follow, or Biopsy? Impact of Artificial Intelligence Decision Support on Breast Ultrasound Lesion Assessment.
AJR Am J Roentgenol. 2020 Jun;214(6):1445-1452. doi: 10.2214/AJR.19.21872. Epub 2020 Apr 22.
5
AI: Can It Make a Difference to the Predictive Value of Ultrasound Breast Biopsy?
Diagnostics (Basel). 2023 Feb 20;13(4):811. doi: 10.3390/diagnostics13040811.
6
Artificial Intelligence in BI-RADS Categorization of Breast Lesions on Ultrasound: Can We Omit Excessive Follow-ups and Biopsies?
Acad Radiol. 2024 Jun;31(6):2194-2202. doi: 10.1016/j.acra.2023.11.031. Epub 2023 Dec 11.
8
Can an Artificial Intelligence Decision Aid Decrease False-Positive Breast Biopsies?
Ultrasound Q. 2020 Dec 28;37(1):10-15. doi: 10.1097/RUQ.0000000000000550.

引用本文的文献

1
Clinical Utility of Atrioventricular Coupling Index in Cardiovascular Disease.
J Am Heart Assoc. 2025 Jun 3;14(11):e041392. doi: 10.1161/JAHA.125.041392. Epub 2025 May 22.

本文引用的文献

1
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4.
3
Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine.
J Breast Cancer. 2023 Oct;26(5):405-435. doi: 10.4048/jbc.2023.26.e45.
4
Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging.
Diagnostics (Basel). 2023 Aug 25;13(17):2760. doi: 10.3390/diagnostics13172760.
5
Toward AI-supported US Triage of Women with Palpable Breast Lumps in a Low-Resource Setting.
Radiology. 2023 May;307(4):e223351. doi: 10.1148/radiol.223351. Epub 2023 May 2.
6
Differential Diagnosis of DCIS and Fibroadenoma Based on Ultrasound Images: a Difference-Based Self-Supervised Approach.
Interdiscip Sci. 2023 Jun;15(2):262-272. doi: 10.1007/s12539-022-00547-7. Epub 2023 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验