Suppr超能文献

使用深度学习技术自动检测咬合翼片和根尖口内X光片中的牙槽骨吸收:初步评估

Automatic Detection of Radiographic Alveolar Bone Loss in Bitewing and Periapical Intraoral Radiographs Using Deep Learning Technology: A Preliminary Evaluation.

作者信息

AlGhaihab Amjad, Moretti Antonio J, Reside Jonathan, Tuzova Lyudmila, Huang Yiing-Shiuan, Tyndall Donald A

机构信息

Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.

Department of Diagnostic Sciences, Oral and Maxillofacial Radiology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Diagnostics (Basel). 2025 Feb 27;15(5):576. doi: 10.3390/diagnostics15050576.

Abstract

Periodontal disease is a prevalent inflammatory condition affecting the supporting structures of teeth, with radiographic bone loss (RBL) being a critical diagnostic marker. The accurate and consistent evaluation of RBL is essential for the staging and grading of periodontitis, as outlined by the 2017 AAP/EFP Classification. Advanced tools such as deep learning (DL) technology, including Denti.AI, an FDA-cleared software utilizing convolutional neural networks (CNNs), offer the potential for enhancing diagnostic accuracy. This study evaluated the diagnostic accuracy of Denti.AI for detecting RBL in intraoral radiographs. A dataset of 39 intraoral radiographs (22 periapical and 17 bitewing), covering 316 tooth surfaces (123 periapical and 193 bitewing), was selected from a de-identified pool of 500 radiographs provided by Denti.AI. RBL was assessed using the 2017 AAP/EFP Classification. A consensus panel of three board-certified dental specialists served as the reference standard. Performance metrics, including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and mean absolute error (MAE), were calculated. For periapical radiographs, Denti.AI achieved a sensitivity of 76%, specificity of 86%, PPV of 83%, NPV of 80%, and accuracy of 81%, with an MAE of 0.046%. For bitewing radiographs, sensitivity was 65%, specificity was 90%, PPV was 88%, NPV was 70%, and accuracy was 76%, with an MAE of 0.499 mm. Denti.AI demonstrated clinically acceptable performance in detecting RBL and shows potential as an adjunctive diagnostic tool, supporting clinical decision-making. While performance was robust for periapical radiographs, further optimization may enhance its accuracy for bitewing radiographs.

摘要

牙周病是一种常见的炎症性疾病,会影响牙齿的支持结构,影像学骨丧失(RBL)是一项关键的诊断指标。如2017年美国牙周病学会(AAP)/欧洲牙周病学会(EFP)分类所概述,对RBL进行准确且一致的评估对于牙周炎的分期和分级至关重要。深度学习(DL)技术等先进工具,包括经美国食品药品监督管理局(FDA)批准的利用卷积神经网络(CNN)的Denti.AI软件,具有提高诊断准确性的潜力。本研究评估了Denti.AI在口腔内X光片中检测RBL的诊断准确性。从Denti.AI提供的500张去识别化X光片库中选取了一个包含39张口腔内X光片(22张根尖片和17张翼片)的数据集,覆盖316个牙面(123个根尖片牙面和193个翼片牙面)。使用2017年AAP/EFP分类评估RBL。由三位获得委员会认证的牙科专家组成的共识小组作为参考标准。计算了包括灵敏度、特异度、阳性预测值(PPV)、阴性预测值(NPV)、准确度和平均绝对误差(MAE)在内的性能指标。对于根尖片,Denti.AI的灵敏度为76%,特异度为86%,PPV为83%,NPV为80%,准确度为81%,MAE为0.046%。对于翼片,灵敏度为65%,特异度为90%,PPV为88%,NPV为70%,准确度为76%,MAE为0.499毫米。Denti.AI在检测RBL方面表现出临床可接受的性能,并显示出作为辅助诊断工具的潜力,有助于临床决策。虽然其在根尖片上的性能强劲,但进一步优化可能会提高其在翼片上的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5d/11899607/6bf1549e7955/diagnostics-15-00576-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验