Alonso-Almorox Paula, Blanco Alfonso, Fiorito Carla, Sierra Eva, Suárez-Santana Cristian, Consolli Francesco, Arbelo Manuel, Guzmán Raiden Grandía, Molpeceres-Diego Ignacio, Fernández Gómez Antonio, Almunia Javier, Castro-Alonso Ayoze, Fernández Antonio
Veterinary Histology and Pathology, Atlantic Center for Cetacean Research (CAIC), Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña s/n, 35413 Arucas, Spain.
Department of Anatomy and Comparative Pathology and Anatomy, University of Cordoba, 14014 Cordoba, Spain.
Animals (Basel). 2025 Mar 4;15(5):735. doi: 10.3390/ani15050735.
The pituitary gland regulates essential physiological processes in mammals. Despite its importance, research on its anatomy and ultrastructure in dolphins remains scarce. Using non-invasive imaging technology (MRI) and a novel skull-opening and dissection protocol, this study characterizes the dolphin pituitary through immunohistochemistry (IHC) and transmission electron microscopy (TEM). A total of 47 pituitaries were collected from stranded common bottlenose dolphins (). common dolphins (), and Atlantic spotted dolphins (). as well as from captive common bottlenose dolphins. MRI allowed visualization of the gland's anatomy and its spatial relationship with the hypothalamus and surrounding structures. A modified skull-opening and pituitary extraction protocol ensured the preservation of the adenohypophysis and neurohypophysis for detailed analysis. Histological, immunohistochemical, and ultrastructural studies confirmed the gland's structural organization, identifying eight distinct adenohypophyseal cell types: corticotrophs (ACTH), somatotrophs (GH), gonadotrophs (FSH and LH), lactotrophs (LTH), melanotrophs (MSH), thyrotrophs (TSH), follicular cells, and capsular cells. This study presents the first immunolabelling of thyrotrophs in cetacean adenohypophysis and the first detailed ultrastructural characterization of adenohypophyseal cells in cetaceans, providing baseline data for future research. By integrating multidisciplinary techniques, it advances the understanding of dolphin neuroendocrinology and highlights broader implications for cetacean health, welfare, and conservation.
垂体调节哺乳动物的基本生理过程。尽管其很重要,但关于海豚垂体的解剖结构和超微结构的研究仍然很少。本研究使用非侵入性成像技术(MRI)以及一种新颖的颅骨切开和解剖方案,通过免疫组织化学(IHC)和透射电子显微镜(TEM)对海豚垂体进行了表征。总共从搁浅的宽吻海豚、真海豚和大西洋斑点海豚以及圈养的宽吻海豚身上收集了47个垂体。MRI使人们能够可视化该腺体的解剖结构及其与下丘脑和周围结构的空间关系。一种改良的颅骨切开和垂体提取方案确保了腺垂体和神经垂体的保存,以便进行详细分析。组织学、免疫组织化学和超微结构研究证实了该腺体的结构组织,确定了八种不同的腺垂体细胞类型:促肾上腺皮质激素细胞(ACTH)、生长激素细胞(GH)、促性腺激素细胞(FSH和LH)、催乳激素细胞(LTH)、促黑素细胞(MSH)、促甲状腺激素细胞(TSH)、滤泡细胞和被膜细胞。本研究首次对鲸类腺垂体中的促甲状腺激素细胞进行了免疫标记,并首次对鲸类腺垂体细胞进行了详细的超微结构表征,为未来的研究提供了基线数据。通过整合多学科技术,本研究推进了对海豚神经内分泌学的理解,并突出了对鲸类健康、福利和保护的更广泛意义。