Suppr超能文献

基于变阻器反馈机制的电驱动液晶弹性体自振荡器

Electrically Driven Liquid Crystal Elastomer Self-Oscillators via Rheostat Feedback Mechanism.

作者信息

Li Kai, Li Zuhao, Zhou Lin

机构信息

School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China.

School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China.

出版信息

Polymers (Basel). 2025 Feb 25;17(5):617. doi: 10.3390/polym17050617.

Abstract

The reliance of feedback mechanisms in conventional light-fueled self-oscillating systems on spatially distributed light and intricately designed structures impedes their application and development in micro-robots, miniature actuators, and other small-scale devices. This paper presents a straightforward rheostat feedback mechanism to create an electrically driven liquid crystal elastomer (LCE) self-oscillator which comprises an LCE fiber, a rheostat, a spring, and a mass. Based on the electrothermally responsive LCE model, we first derive the governing equation for the system's dynamics and subsequently formulate the asymptotic equation. Numerical calculations reveal two motion phases, i.e., static and self-oscillating, and elucidate the mechanism behind self-oscillation. By employing the multi-scale method, we identify the Hopf bifurcation and establish the analytical solutions for amplitude and frequency. The influence of various system parameters on the amplitude and frequency of self-oscillation was analyzed, with numerical solutions being validated against analytical results to ensure consistency. The proposed rheostat feedback mechanism can be extended to cases with rheostats that have more general resistance properties and offers advantages such as simple design, adjustable dimensions, and rapid operation. The findings are expected to inspire broader design concepts for applications in soft robotics, sensors, and adaptive structures.

摘要

传统光驱动自振荡系统中的反馈机制依赖于空间分布的光和精心设计的结构,这阻碍了它们在微型机器人、微型致动器和其他小型设备中的应用和发展。本文提出了一种简单的变阻器反馈机制,以创建一种电驱动的液晶弹性体(LCE)自振荡器,该振荡器由LCE纤维、变阻器、弹簧和质量块组成。基于电热响应LCE模型,我们首先推导了系统动力学的控制方程,随后建立了渐近方程。数值计算揭示了两个运动阶段,即静态和自振荡阶段,并阐明了自振荡背后的机制。通过采用多尺度方法,我们确定了霍普夫分岔,并建立了振幅和频率的解析解。分析了各种系统参数对自振荡振幅和频率的影响,并将数值解与解析结果进行了验证,以确保一致性。所提出的变阻器反馈机制可以扩展到具有更一般电阻特性的变阻器的情况,并具有设计简单、尺寸可调、运行快速等优点。这些发现有望为软机器人、传感器和自适应结构中的应用激发更广泛的设计概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0059/11902770/3b9d04a1b069/polymers-17-00617-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验