Suppr超能文献

利用机器学习和近红外光谱识别老化聚丙烯以促进回收利用

Identification of Aged Polypropylene with Machine Learning and Near-Infrared Spectroscopy for Improved Recycling.

作者信息

Zhu Keyu, Wu Delong, Yang Songwei, Cao Changlin, Zhou Weiming, Qian Qingrong, Chen Qinghua

机构信息

College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou 350007, China.

Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.

出版信息

Polymers (Basel). 2025 Mar 6;17(5):700. doi: 10.3390/polym17050700.

Abstract

The traditional plastic sorting process primarily relies on manual operations, which are inefficient, pose safety risks, and result in suboptimal separation efficiency for mixed waste plastics. Near-infrared (NIR) spectroscopy, with its rapid and non-destructive analytical capabilities, presents a promising alternative. However, the analysis of NIR spectra is often complicated by overlapping peaks and complex data patterns, limiting its direct applicability. This study establishes a comprehensive machine learning-based NIR spectroscopy model to distinguish polypropylene (PP) at different aging stages. A dataset of NIR spectra was collected from PP samples subjected to seven simulated aging stages, followed by the construction of a classification model to analyze these spectral variations. The aging of PP was confirmed using Fourier-transform infrared spectroscopy (FTIR). Mechanical property analysis, including tensile strength and elongation at break, revealed a gradual decline with prolonged aging. After 40 days of accelerated aging, the elongation at the break of PP dropped to approximately 30%, retaining only about one-sixth of its original mechanical performance. Furthermore, various spectral preprocessing methods were evaluated to identify the most effective technique. The combination of the second derivative method with a linear -SVC achieved a classification accuracy of 99% and a precision of 100%. This study demonstrates the feasibility of the accurate identification of PP at different aging stages, thereby enhancing the quality and efficiency of recycled plastics and promoting automated, precise, and sustainable recycling processes.

摘要

传统的塑料分拣过程主要依赖人工操作,效率低下,存在安全风险,并且对于混合废塑料的分离效率欠佳。近红外(NIR)光谱具有快速且无损的分析能力,是一种很有前景的替代方法。然而,近红外光谱的分析常常因峰重叠和复杂的数据模式而变得复杂,限制了其直接适用性。本研究建立了一个基于机器学习的综合近红外光谱模型,以区分不同老化阶段的聚丙烯(PP)。从经历了七个模拟老化阶段的PP样品中收集了近红外光谱数据集,随后构建了一个分类模型来分析这些光谱变化。使用傅里叶变换红外光谱(FTIR)确认了PP的老化情况。包括拉伸强度和断裂伸长率在内的力学性能分析表明,随着老化时间的延长,性能逐渐下降。加速老化40天后,PP的断裂伸长率降至约30%,仅保留其原始力学性能的约六分之一。此外,还评估了各种光谱预处理方法,以确定最有效的技术。二阶导数法与线性支持向量分类器(linear -SVC)相结合,分类准确率达到99%,精确率达到100%。本研究证明了准确识别不同老化阶段PP的可行性,从而提高了再生塑料的质量和效率,并促进了自动化、精确和可持续的回收过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf23/11902415/c74b074d8386/polymers-17-00700-g001.jpg

相似文献

3
Contaminant detection in flexible polypropylene packaging waste using hyperspectral imaging and machine learning.
Waste Manag. 2025 Mar;195:264-274. doi: 10.1016/j.wasman.2025.02.010. Epub 2025 Feb 10.
6
Rapid Identification of Marine Plastic Debris via Spectroscopic Techniques and Machine Learning Classifiers.
Environ Sci Technol. 2020 Sep 1;54(17):10630-10637. doi: 10.1021/acs.est.0c02099. Epub 2020 Aug 18.
7
A discrimination model in waste plastics sorting using NIR hyperspectral imaging system.
Waste Manag. 2018 Feb;72:87-98. doi: 10.1016/j.wasman.2017.10.015. Epub 2017 Nov 10.
8
A Multimodal Spectroscopic Approach Combining Mid-infrared and Near-infrared for Discriminating Gram-positive and Gram-negative Bacteria.
Anal Chem. 2024 Nov 19;96(46):18392-18400. doi: 10.1021/acs.analchem.4c03060. Epub 2024 Nov 4.
10

本文引用的文献

1
Polypropylene Modified with Carbon Nanomaterials: Structure, Properties and Application (A Review).
Polymers (Basel). 2025 Feb 17;17(4):517. doi: 10.3390/polym17040517.
2
Non-destructive origin and ginsenoside analysis of American ginseng via NIR and deep learning.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Jun 5;334:125913. doi: 10.1016/j.saa.2025.125913. Epub 2025 Feb 17.
4
Defining quality by quantifying degradation in the mechanical recycling of polyethylene.
Nat Commun. 2024 Oct 9;15(1):8733. doi: 10.1038/s41467-024-52856-8.
6
Evaluation metrics and statistical tests for machine learning.
Sci Rep. 2024 Mar 13;14(1):6086. doi: 10.1038/s41598-024-56706-x.
7
Research and application of polypropylene: a review.
Discov Nano. 2024 Jan 2;19(1):2. doi: 10.1186/s11671-023-03952-z.
8
Plastic waste recycling is gaining momentum.
Science. 2023 Aug 11;381(6658):607-608. doi: 10.1126/science.adj2807. Epub 2023 Aug 10.
10
Development of an inter-confirmatory plastic characterization system using spectroscopic techniques for waste management.
Waste Manag. 2022 Aug 1;150:339-351. doi: 10.1016/j.wasman.2022.07.025. Epub 2022 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验