Suppr超能文献

采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)结合多变量分析快速鉴定药用黄精属植物种类并预测多糖含量

Rapid Identification of Medicinal Polygonatum Species and Predictive of Polysaccharides Using ATR-FTIR Spectroscopy Combined With Multivariate Analysis.

作者信息

Wang Yue, Li Zhimin, Li Wanyi, Wang Yuanzhong

机构信息

Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.

College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.

出版信息

Phytochem Anal. 2025 Apr;36(3):677-692. doi: 10.1002/pca.3459. Epub 2024 Oct 18.

Abstract

INTRODUCTION

Medicinal Polygonatum species is a widely used traditional Chinese medicine with high nutritional value, known for its anti-fatigue properties, enhancement of immunity, delays aging, improves sleep, and other health benefits. However, the efficacy of different species varies, making the quality control of medicinal Polygonatum species increasingly important. Polysaccharides are important in medicinal Polygonatum species because of their potential functional properties, such as antioxidation, hypoglycemia, protection of intestinal health, and minimal toxicological effects on human health, as well as high polysaccharide levels.

OBJECTIVE

This study developed a qualitative medicinal Polygonatum species model and a polysaccharides predictive model based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) combined with a multivariate analysis approach.

MATERIALS AND METHODS

ATR-FTIR spectral information of 334 medicinal Polygonatum species samples was collected and the spectral information of different modes was analyzed. The ATR-FTIR spectral differences of three medicinal Polygonatum species were studied by multivariate analysis combined with four spectral preprocessing and three variable selection methods. For the prediction of polysaccharides in Polygonatum kingianum Collett & Hemsl. (PK), we initially determined the actual content of 110 PK polysaccharide samples using the anthrone-sulfuric acid method, then established partial least squares regression (PLSR) and kernel PLSR models in conjunction with attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.

RESULTS

In the visualization analysis, the orthogonal partial least squares-discriminant analysis (OPLS-DA) model based on second-order derivative (SD) preprocessing was most suitable for medicinal Polygonatum species species binary classification, spectral differences between Polygonatum cyrtonema Hua (PC) and other species are evident; in the hard modeling, SD preprocessing improves the accuracy of non-deep learning models for the classification of three medicinal Polygonatum species. In contrast, residual neural network (ResNet) models were the best choice for species identification without preprocessing and variable selection. In addition, the partial least squares regression (PLSR) model and Kernel-PLSR model can quickly predict PK polysaccharides content, among them, the Kernel-PLSR model with SD pretreatment has the best prediction performance, residual prediction deviation (RPD) = 7.2870, Rp = 0.9905.

CONCLUSION

In this study, we employed ATR-FTIR spectroscopy and various treatments to discern different medicinal Polygonatum species. We also evaluated the effects of preprocessing methods and variable selection on the prediction of PK polysaccharides by PLSR and Kernel-PLSR models. Among them, the ResNet model can achieve 100% correct classification of medicinal Polygonatum species without complex spectral preprocessing. Furthermore, the Kernel-PLSR model based on SD-ATR-FTIR spectra had the best performance in polysaccharides prediction. In summary, by integrating ATR-FTIR spectroscopy with multivariate analysis, this research accomplished the classification of medicinal Polygonatum species and the prediction of polysaccharides. The methodology offers the benefits of speed, environmental sustainability, and precision, highlighting its significant potential for practical applications. In future research, on the one hand, it can be further investigated using a portable infrared spectrometer, and on the other hand, infrared spectroscopy can also be applied to the prediction of other chemical components of medicinal Polygonatum species.

摘要

引言

黄精属药用植物是一种广泛应用的传统中药,具有很高的营养价值,以其抗疲劳、增强免疫力、延缓衰老、改善睡眠等对健康有益的特性而闻名。然而,不同品种的功效有所差异,这使得黄精属药用植物的质量控制变得越来越重要。多糖在黄精属药用植物中很重要,因为它们具有潜在的功能特性,如抗氧化、降血糖、保护肠道健康以及对人体健康的毒理学影响极小,而且多糖含量高。

目的

本研究基于衰减全反射傅里叶变换红外光谱(ATR-FTIR)结合多元分析方法,建立了黄精属药用植物定性模型和多糖预测模型。

材料与方法

收集了334份黄精属药用植物样本的ATR-FTIR光谱信息,并分析了不同模式的光谱信息。结合四种光谱预处理和三种变量选择方法,通过多元分析研究了三种黄精属药用植物的ATR-FTIR光谱差异。对于滇黄精(PK)中多糖的预测,我们首先使用蒽酮-硫酸法测定了110份PK多糖样本的实际含量,然后结合衰减全反射傅里叶变换红外(ATR-FTIR)光谱建立了偏最小二乘回归(PLSR)模型和核偏最小二乘回归(Kernel-PLSR)模型。

结果

在可视化分析中,基于二阶导数(SD)预处理的正交偏最小二乘判别分析(OPLS-DA)模型最适合黄精属药用植物的二元分类,滇黄精(PC)与其他品种之间的光谱差异明显;在硬建模中,SD预处理提高了非深度学习模型对三种黄精属药用植物分类的准确性。相比之下,残差神经网络(ResNet)模型是无需预处理和变量选择的品种识别的最佳选择。此外,偏最小二乘回归(PLSR)模型和核偏最小二乘回归(Kernel-PLSR)模型可以快速预测PK多糖含量,其中,经过SD预处理的Kernel-PLSR模型预测性能最佳,剩余预测偏差(RPD)=7.2870,Rp=0.9905。

结论

在本研究中,我们采用ATR-FTIR光谱法和各种处理方法来鉴别不同的黄精属药用植物。我们还评估了预处理方法和变量选择对PLSR和Kernel-PLSR模型预测PK多糖的影响。其中,ResNet模型无需复杂的光谱预处理即可实现黄精属药用植物的100%正确分类。此外,基于SD-ATR-FTIR光谱的Kernel-PLSR模型在多糖预测方面表现最佳。综上所述,通过将ATR-FTIR光谱与多元分析相结合,本研究完成了黄精属药用植物的分类和多糖的预测。该方法具有快速、环境可持续和精确的优点,突出了其在实际应用中的巨大潜力。在未来的研究中,一方面可以使用便携式红外光谱仪进行进一步研究,另一方面红外光谱也可以应用于黄精属药用植物其他化学成分的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验