Suppr超能文献

优化切削参数以增强对Ti6Al4V合金干式车削中温度、切削力和能耗的控制

Optimizing Cutting Parameters for Enhanced Control of Temperature, Cutting Forces, and Energy Consumption in Dry Turning of Ti6Al4V Alloy.

作者信息

Herrera Fernández Manuel, Martín-Béjar Sergio, Sevilla Hurtado Lorenzo, Trujillo Vilches Francisco Javier

机构信息

Department of Civil, Materials and Manufacturing Engineering, Engineering School, University of Malaga, 29071 Malaga, Spain.

出版信息

Materials (Basel). 2025 Feb 21;18(5):942. doi: 10.3390/ma18050942.

Abstract

This study aims to analyze the influence of cutting parameters (cutting speed, feed rate, and depth of cut) on cutting temperature, forces, and energy consumption during the dry turning of Ti6Al4V, providing an optimized machining strategy to improve efficiency and sustainability. Due to the challenges of machining this alloy, such as high temperatures and tool wear, response surface methodology (RSM) was used to develop second-degree polynomial models, and analysis of variance (ANOVA) identified the most influential factors. The results indicate that depth of cut has the highest impact on cutting temperature (42.59%), cutting forces (53.08%, 74.73%, and 48.87% in the respective force components), and power consumption (49.78%), while feed rate is the dominant factor in energy consumption (63.36%). Gray relational analysis (GRA) was applied to optimize machining conditions based on the developed models, allowing a wider selection of cutting parameters beyond the experimental values. These findings provide a valuable tool for the industry, offering manufacturers a data-driven approach to optimizing the machining of Ti6Al4V and reducing energy consumption and tool wear while improving process stability. The proposed methodology enhances sustainability and cost-efficiency in titanium alloy machining, particularly in the aeronautical sector.

摘要

本研究旨在分析切削参数(切削速度、进给速度和切削深度)对Ti6Al4V干式车削过程中切削温度、切削力和能耗的影响,提供一种优化的加工策略以提高效率和可持续性。由于加工这种合金存在高温和刀具磨损等挑战,采用响应面法(RSM)建立二阶多项式模型,并通过方差分析(ANOVA)确定最具影响力的因素。结果表明,切削深度对切削温度的影响最大(42.59%),对切削力的影响也最大(在各力分量中分别为53.08%、74.73%和48.87%),对功耗的影响同样最大(49.78%),而进给速度是能耗的主导因素(63.36%)。基于所建立的模型,应用灰色关联分析(GRA)优化加工条件,使得在实验值之外能有更广泛的切削参数选择。这些研究结果为该行业提供了一个有价值的工具,为制造商提供了一种数据驱动的方法来优化Ti6Al4V的加工,在提高加工过程稳定性的同时降低能耗和刀具磨损。所提出的方法提高了钛合金加工的可持续性和成本效益,特别是在航空领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0ec/11901140/f4c5a5f0de2a/materials-18-00942-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验