Suppr超能文献

一种高强度低合金钢在热成型条件下的低周疲劳行为。

The Low-Cycle Fatigue Behavior of a High-Strength Low-Alloy Steel Subjected to Tempforming.

作者信息

Dolzhenko Anastasiia, Dolzhenko Pavel, Dudko Valeriy, Kaibyshev Rustam, Belyakov Andrey

机构信息

Laboratory of Mechanical Properties of Nanostructured Materials and Superalloys, Belgorod State University, Belgorod 308015, Russia.

出版信息

Materials (Basel). 2025 Feb 21;18(5):972. doi: 10.3390/ma18050972.

Abstract

The developed microstructures and their deformation behavior were studied in a high-strength low-alloy steel subjected to tempforming, i.e., tempering followed by large-strain rolling at temperatures of 823 K or 923 K. Tempforming has been recently proposed as an advanced treatment for low-alloy steels in order to substantially increase their impact toughness at low temperatures. However, the mechanical properties, especially the fatigue behavior, of tempformed steels have not been studied in sufficient detail. The present study, therefore, is focused on the strengthening mechanisms of the tempformed steel, placing particular emphasis on the low-cycle fatigue behavior. Tempforming resulted in a lamellar-type microstructure with a high dislocation density and dispersed CrC carbide particles. The size of the latter particles increased from 25 nm to 40 nm with an increase in tempforming temperature. The transverse grain size and dislocation density comprised 550 nm and 2.6 × 10 m after tempforming at 823 K or 865 nm and 1.8 × 10 m after processing at 923 K, respectively. Tempforming led to significant strengthening, which was attributed to high-density dislocations arranged in low-angle subboundaries. The yield strength of 1140 MPa or 810 MPa was observed for the steel samples tempformed at 823 K or 923 K, respectively. The low-cycle fatigue behavior depended on the plastic strain amplitude, which, in turn, was controlled by the previous strengthening under tempforming conditions besides the total strain amplitude. An increase in the plastic strain amplitude promoted fatigue softening that was caused by a decrease in the dislocation density as a result of subgrain coalescence.

摘要

研究了一种高强度低合金钢在温轧成型(即在823K或923K温度下先回火再进行大应变轧制)过程中形成的微观组织及其变形行为。温轧成型最近被提议作为低合金钢的一种先进处理方法,以便大幅提高其低温冲击韧性。然而,温轧成型钢的力学性能,特别是疲劳行为,尚未得到足够详细的研究。因此,本研究聚焦于温轧成型钢的强化机制,特别强调低周疲劳行为。温轧成型导致形成了具有高位错密度和弥散分布的CrC碳化物颗粒的层片状微观组织。随着温轧成型温度的升高,后一种颗粒的尺寸从25nm增加到40nm。在823K进行温轧成型后,横向晶粒尺寸和位错密度分别为550nm和2.6×10 ;在923K进行加工后,分别为865nm和1.8×10 。温轧成型导致显著强化,这归因于排列在低角度亚晶界中的高密度位错。在823K或923K进行温轧成型的钢样品的屈服强度分别为1140MPa或810MPa。低周疲劳行为取决于塑性应变幅值,而塑性应变幅值又除了总应变幅值外还受温轧成型条件下先前强化的控制。塑性应变幅值的增加促进了疲劳软化,这是由于亚晶粒合并导致位错密度降低所致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6e4/11901025/2f130806fdbb/materials-18-00972-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验