Li Xing, Lu Lekang, Fang Jiashu, Liang Junjia, Yang Yesong, Zhao Xiaojun, Liu Sainan, Xiao Lairong, Cai Zhenyang
School of Materials Science and Engineering, Central South University, Changsha 410083, China.
Powder Metallurgy Research Institute, Central South University, Changsha 410083, China.
Materials (Basel). 2025 Feb 28;18(5):1103. doi: 10.3390/ma18051103.
Advancements in electrical components have intensified the challenges for copper alloy wear resistance and high-temperature performance in electrical applications. The surface coating preparation of Cu alloys is crucial for enhancing their lifespan and promoting sustainable resource development. This study explored the microstructure and properties of Cu-Cr-X coatings (X = Mo/W, AlO/TiO) on Cu alloy substrates via laser-cladding to improve wear resistance and hardness, vital for electrical component reliability and switching capacity. The process involved adjusting the power and reinforcing the phase particle size. The results showed hardness > 110 HV for all coatings (vs. 67.4 HV for the substrate). Cu-Cr-W achieved the highest hardness at 179 HV due to W dispersion and WCr precipitate reinforcement. It also maintained a stable CoF and the lowest wear rate (1.87 mg/km), with a fivefold wear resistance compared to the substrate alone. Cu-Cr-W excelled in lifespan extension and material loss reduction due to superior hardness, wear resistance, and conductivity.
电气元件的进步加剧了铜合金在电气应用中耐磨性和高温性能方面的挑战。铜合金的表面涂层制备对于延长其使用寿命和促进可持续资源开发至关重要。本研究通过激光熔覆探索了铜合金基体上Cu-Cr-X涂层(X = Mo/W,AlO/TiO)的微观结构和性能,以提高耐磨性和硬度,这对于电气元件的可靠性和开关容量至关重要。该过程涉及调整功率和强化相颗粒尺寸。结果表明,所有涂层的硬度均> 110 HV(基体为67.4 HV)。由于W的弥散和WCr析出强化,Cu-Cr-W的硬度最高,达到179 HV。它还保持了稳定的摩擦系数和最低的磨损率(1.87 mg/km),与单独的基体相比,耐磨性提高了五倍。由于具有优异的硬度、耐磨性和导电性,Cu-Cr-W在延长使用寿命和减少材料损失方面表现出色。