Chen Jie, Kisimbiri George Wandera, Gladich Ivan, Fauré Nicolas, Thomson Erik S, Temperton Robert, Kanji Zamin A, Kong Xiangrui
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich 8092, Switzerland.
Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden.
J Phys Chem A. 2025 Mar 27;129(12):2922-2931. doi: 10.1021/acs.jpca.5c00332. Epub 2025 Mar 13.
The formation of nitrogen- and sulfur-containing organic compounds (N-Org and S-Org) is important for atmospheric secondary organic aerosol (SOA) production, thereby influencing air quality and global climate. However, the mechanisms underlying N-Org and S-Org formation on aerosol particle surfaces are poorly understood due to the limited availability of surface-sensitive analytical techniques. This study investigates the surface interactions of glyoxal (GL), a known SOA precursor, with ammonium sulfate (NH)SO, under varying relative humidity (RH) conditions, using ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and molecular dynamics (MD) simulations. N-Org species, such as imines, a key intermediate in brown carbon (BrC) formation, are identified on the (NH)SO surface at low RH (≤13.3%). The formed S-Org species cannot be specified due to the difficulties in distinguishing S-Org from inorganic sulfate in the XPS spectra. Elemental ratios on (NH)SO surface across the entire probing depth show increased S/O and N/O ratios upon GL exposure, indicating the formation of N-Org and S-Org species. NEXAFS measurements further confirm the surface changes of (NH)SO associated with the adsorption of GL and water. These findings provide compelling evidence of surface-driven N-Org and S-Org formation pathways, demonstrating that heterogeneous reactions on (NH)SO particle surfaces could be an active source of atmospheric BrC and SOA.
含氮和含硫有机化合物(N-Org和S-Org)的形成对于大气二次有机气溶胶(SOA)的产生很重要,从而影响空气质量和全球气候。然而,由于表面敏感分析技术的可用性有限,气溶胶颗粒表面上N-Org和S-Org形成的潜在机制尚不清楚。本研究使用常压X射线光电子能谱(APXPS)、近边X射线吸收精细结构(NEXAFS)光谱和分子动力学(MD)模拟,研究了已知的SOA前体乙二醛(GL)与硫酸铵(NH)SO在不同相对湿度(RH)条件下的表面相互作用。在低相对湿度(≤13.3%)下,在(NH)SO表面上鉴定出了N-Org物种,如亚胺,这是棕碳(BrC)形成中的关键中间体。由于在XPS光谱中难以区分S-Org和无机硫酸盐,因此无法确定所形成的S-Org物种。在整个探测深度内,(NH)SO表面的元素比率显示,暴露于GL后,S/O和N/O比率增加,表明形成了N-Org和S-Org物种。NEXAFS测量进一步证实了与GL和水吸附相关的(NH)SO的表面变化。这些发现为表面驱动的N-Org和S-Org形成途径提供了有力证据,表明(NH)SO颗粒表面上的非均相反应可能是大气BrC和SOA的一个活跃来源。