Suppr超能文献

用于高性能全固态钠金属电池的铜掺杂金属有机框架-74固态电解质

Copper-doped metal-organic framework-74 solid-state electrolytes for high performance all-solid-state sodium metal batteries.

作者信息

Zhang Hao, Zhou Zhiyuan, Sun Xinyao, Zhang Yao, Xu Hang, Gao Yanfang

机构信息

College of Chemical Engineering, Inner Mongolia University of Technology, & Engineering Research Center of Large Energy Storage Technology Ministry of Education, Hohhot 010051, China.

College of Chemical Engineering, Inner Mongolia University of Technology, & Engineering Research Center of Large Energy Storage Technology Ministry of Education, Hohhot 010051, China; Department of Chemistry, & Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China.

出版信息

J Colloid Interface Sci. 2025 Jul;689:137241. doi: 10.1016/j.jcis.2025.03.030. Epub 2025 Mar 3.

Abstract

Rechargeable solid sodium metal batteries are attractive by virtue of their high energy density and cost-effectiveness. However, the inefficient Na transport dynamics and short lifepan hinder the practical application of solid sodium battery. Mg-MOF-74 nanomaterials have emerged as promising candidates for solid-state electrolytes because of their homogeneous porous structure and highly exposed metal sites. Nonetheless, the Na conductivity of pristine Mg-MOF-74 solid-state electrolytes is limited by sluggish ion movement. In this study, we successfully developed a series of bimetallic MOFs, specifically CuMg-MOF-74, by introducing copper doped metal to Mg-MOF-74. This metal-doped MOF electrolytes possess excellent Na transport and enhanced electrochemical stability in solid sodium metal batteries. The bimetallic sites of CuMg-MOF-74 deliver a superior capability to anchor anion ClO than single Mg sites in Mg-MOF-74, as validated by density functional theory calculation. Benefiting from that, CuMg-MOF-74 electrolytes substantially increase the ionic conductivity to 3.18 × 10 S cm and the Na transference number to 0.86 at room temperature. Additionally, NaV(PO)|CuMg-MOF-74|Na cells demonstrated a high specific capacity of 104.5 mAh g at 1C, with an impressive capacity retention rate of 91 %. Overall, this study delivers a viable method to optimize MOF materials for improved Na conductivity in future applications.

摘要

可充电固态钠金属电池因其高能量密度和成本效益而备受关注。然而,低效的钠传输动力学和较短的寿命阻碍了固态钠电池的实际应用。Mg-MOF-74纳米材料因其均匀的多孔结构和高度暴露的金属位点而成为固态电解质的有前途的候选材料。尽管如此,原始Mg-MOF-74固态电解质的钠电导率受到离子迁移缓慢的限制。在本研究中,我们通过将铜掺杂金属引入Mg-MOF-74成功开发了一系列双金属MOF,特别是CuMg-MOF-74。这种金属掺杂的MOF电解质在固态钠金属电池中具有优异的钠传输性能和增强的电化学稳定性。密度泛函理论计算验证,CuMg-MOF-74的双金属位点比Mg-MOF-74中的单个Mg位点具有更强的锚定阴离子ClO的能力。受益于此,CuMg-MOF-74电解质在室温下将离子电导率大幅提高到3.18×10 S cm,钠迁移数提高到0.86。此外,NaV(PO)|CuMg-MOF-74|Na电池在1C时表现出104.5 mAh g的高比容量,容量保持率高达91%。总体而言,本研究提供了一种可行的方法来优化MOF材料,以在未来应用中提高钠电导率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验