Suppr超能文献

使用机器学习模型加强城市下水道系统中的硫化氢控制:一种基于提升算法的新型预测模拟方法的开发。

Enhancing hydrogen sulfide control in urban sewer systems using machine learning models: Development of a new predictive simulation approach by using boosting algorithm.

作者信息

Nguyen Duc Viet, Seo Miran, Chen Yue, Wu Di

机构信息

Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, Incheon 21985, Republic of Korea; Department of Green Chemistry and Technology, Ghent University; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent B9000, Belgium.

Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, Incheon 21985, Republic of Korea.

出版信息

J Hazard Mater. 2025 Jul 5;491:137906. doi: 10.1016/j.jhazmat.2025.137906. Epub 2025 Mar 11.

Abstract

Sewer networks are important urban infrastructure for transporting sewage to treatment plants, yet the generation of hydrogen sulfide within these systems poses significant challenges. This acidic toxic gas not only emits foul odors but also causes corrosion, necessitating effective control measures. Recent studies have introduced a modelling approach to predict and control the formation of hydrogen sulfide in sewer system. However, the conventional and mathematical models have demonstrated limitations in simulating non-linear data. Meanwhile, advanced (boosting) machine learnings are proving to be effective tools for forecasting complex data, making them particularly suitable for simulating of sulfide concentrations. In this work, we aimed to develop a novel approach to predict hydrogen sulfide formation in sewer systems. This work employed 11 machine learning models (4 boosting algorithms and 7 traditional algorithms) for over 700 datasets to analysis the correlations between the key sewer operational parameters (including pH, dissolved oxygen (DO), temperature, weather conditions, sulfate concentration, and ammonia levels) and hydrogen sulfide production. The results showed that eXtreme Gradient Boosting (XGBoost) has the highest prediction efficiency (R=0.97, RMSE=0.177 mg/L), outperformed other boosting and traditional methods. The newly developed boosting-based model successfully predicted sulfide formation in various sewer networks, validated against literature data (R> 0.9, RMSE of 0.24 mg/L), confirming its effectiveness for simulating hydrogen sulfide in sewer tunnels. The optimal conditions for minimizing total sulfide generation were identified by the XGBoost model. These findings have the potential to improve the control and operation of sewer system in the future.

摘要

下水道网络是将污水输送到处理厂的重要城市基础设施,但这些系统中硫化氢的产生带来了重大挑战。这种酸性有毒气体不仅会散发恶臭,还会造成腐蚀,因此需要有效的控制措施。最近的研究引入了一种建模方法来预测和控制下水道系统中硫化氢的形成。然而,传统的数学模型在模拟非线性数据方面存在局限性。与此同时,先进的(提升)机器学习被证明是预测复杂数据的有效工具,使其特别适合模拟硫化物浓度。在这项工作中,我们旨在开发一种预测下水道系统中硫化氢形成的新方法。这项工作使用了11种机器学习模型(4种提升算法和7种传统算法)对700多个数据集进行分析,以研究下水道关键运行参数(包括pH值、溶解氧(DO)、温度、天气条件、硫酸盐浓度和氨水平)与硫化氢产生之间的相关性。结果表明,极端梯度提升(XGBoost)具有最高的预测效率(R = 0.97,RMSE = 0.177mg/L),优于其他提升和传统方法。新开发的基于提升的模型成功预测了各种下水道网络中的硫化物形成,并根据文献数据进行了验证(R > 0.9,RMSE为0.24mg/L),证实了其在模拟下水道隧道中硫化氢方面的有效性。通过XGBoost模型确定了使总硫化物产生最小化的最佳条件。这些发现有可能在未来改善下水道系统的控制和运行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验