Suppr超能文献

通过基于时间融合和注意力的卷积神经网络在X射线冠状动脉造影术中进行术中狭窄检测

Intraoperative stenosis detection in X-ray coronary angiography via temporal fusion and attention-based CNN.

作者信息

Chen Meidi, Wang Siyin, Liang Ke, Chen Xiao, Xu Zihan, Zhao Chen, Yuan Weimin, Wan Jing, Huang Qiu

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200040, China.

Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China.

出版信息

Comput Med Imaging Graph. 2025 Jun;122:102513. doi: 10.1016/j.compmedimag.2025.102513. Epub 2025 Feb 23.

Abstract

BACKGROUND AND OBJECTIVE

Coronary artery disease (CAD), the leading cause of mortality, is caused by atherosclerotic plaque buildup in the arteries. The gold standard for the diagnosis of CAD is via X-ray coronary angiography (XCA) during percutaneous coronary intervention, where locating coronary artery stenosis is fundamental and essential. However, due to complex vascular features and motion artifacts caused by heartbeat and respiratory movement, manually recognizing stenosis is challenging for physicians, which may prolong the surgery decision-making time and lead to irreversible myocardial damage. Therefore, we aim to provide an automatic method for accurate stenosis localization.

METHODS

In this work, we present a convolutional neural network (CNN) with feature-level temporal fusion and attention modules to detect coronary artery stenosis in XCA images. The temporal fusion module, composed of the deformable convolution and the correlation-based module, is proposed to integrate time-varifying vessel features from consecutive frames. The attention module adopts channel-wise recalibration to capture global context as well as spatial-wise recalibration to enhance stenosis features with local width and morphology information.

RESULTS

We compare our method to the commonly used attention methods, state-of-the-art object detection methods, and stenosis detection methods. Experimental results show that our fusion and attention strategy significantly improves performance in discerning stenosis (P<0.05), achieving the best average recall score on two different datasets.

CONCLUSIONS

This is the first study to integrate both temporal fusion and attention mechanism into a novel feature-level hybrid CNN framework for stenosis detection in XCA images, which is proved effective in improving detection performance and therefore is potentially helpful in intraoperative stenosis localization.

摘要

背景与目的

冠状动脉疾病(CAD)是导致死亡的主要原因,由动脉粥样硬化斑块堆积引起。CAD诊断的金标准是在经皮冠状动脉介入治疗期间通过X射线冠状动脉造影(XCA),其中定位冠状动脉狭窄是基本且至关重要的。然而,由于复杂的血管特征以及心跳和呼吸运动引起的运动伪影,医生手动识别狭窄具有挑战性,这可能会延长手术决策时间并导致不可逆的心肌损伤。因此,我们旨在提供一种准确的狭窄定位自动方法。

方法

在这项工作中,我们提出了一种具有特征级时间融合和注意力模块的卷积神经网络(CNN),用于检测XCA图像中的冠状动脉狭窄。时间融合模块由可变形卷积和基于相关性的模块组成,旨在整合连续帧中随时间变化的血管特征。注意力模块采用通道维度的重新校准来捕获全局上下文,以及空间维度的重新校准来利用局部宽度和形态信息增强狭窄特征。

结果

我们将我们的方法与常用的注意力方法、当前最先进的目标检测方法和狭窄检测方法进行了比较。实验结果表明,我们的融合和注意力策略在辨别狭窄方面显著提高了性能(P<0.05),在两个不同数据集上实现了最佳平均召回分数。

结论

这是第一项将时间融合和注意力机制集成到一个新颖的特征级混合CNN框架中用于XCA图像狭窄检测的研究,该框架被证明在提高检测性能方面是有效的,因此可能有助于术中狭窄定位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验