Telematics and Digital Signal Processing Research groups (CAs), Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca, 36885 Guanajuato, Mexico.
CONACYT, Center for Research in Mathematics (CIMAT), A.C., Jalisco S/N, Col. Valenciana, Guanajuato, 36000 Guanajuato, Mexico.
Comput Methods Programs Biomed. 2022 Jun;219:106767. doi: 10.1016/j.cmpb.2022.106767. Epub 2022 Mar 23.
Automatic detection of stenosis on X-ray Coronary Angiography (XCA) images may help diagnose early coronary artery disease. Stenosis is manifested by a buildup of plaque in the arteries, decreasing the blood flow to the heart, increasing the risk of a heart attack. Convolutional Neural Networks (CNNs) have been successfully applied to identify pathological, regular, and featured tissues on rich and diverse medical image datasets. Nevertheless, CNNs find operative and performing limitations while working with small and poorly diversified databases. Transfer learning from large natural image datasets (such as ImageNet) has become a de-facto method to improve neural networks performance in the medical image domain.
This paper proposes a novel Hierarchical Bezier-based Generative Model (HBGM) to improve the CNNs training process to detect stenosis. Herein, artificial image patches are generated to enlarge the original database, speeding up network convergence. The artificial dataset consists of 10,000 images containing 50% stenosis and 50% non-stenosis cases. Besides, a reliable Fréchet Inception Distance (FID) is used to evaluate the generated data quantitatively. Therefore, by using the proposed framework, the network is pre-trained with the artificial datasets and subsequently fine-tuned using the real XCA training dataset. The real dataset consists of 250 XCA image patches, selecting 125 images for stenosis and the remainder for non-stenosis cases. Furthermore, a Convolutional Block Attention Module (CBAM) was included in the network architecture as a self-attention mechanism to improve the efficiency of the network.
The results showed that the pre-trained networks using the proposed generative model outperformed the results concerning training from scratch. Particularly, an accuracy, precision, sensitivity, and F1-score of 0.8934, 0.9031, 0.8746, 0.8880, 0.9111, respectively, were achieved. The generated artificial dataset obtains a mean FID of 84.0886, with more realistic visual XCA images.
Different ResNet architectures for stenosis detection have been evaluated, including attention modules into the network. Numerical results demonstrated that by using the HBGM is obtained a higher performance than training from scratch, even outperforming the ImageNet pre-trained models.
在 X 射线冠状动脉造影 (XCA) 图像上自动检测狭窄可能有助于早期诊断冠状动脉疾病。狭窄表现为动脉中斑块的堆积,减少流向心脏的血液,增加心脏病发作的风险。卷积神经网络 (CNN) 已成功应用于识别丰富多样的医学图像数据集上的病理、规则和特征组织。然而,CNN 在处理小型和多样化程度低的数据库时,发现操作和执行存在局限性。从大型自然图像数据集(如 ImageNet)进行迁移学习已成为提高神经网络在医学图像领域性能的一种事实上的方法。
本文提出了一种新颖的基于分层贝塞尔的生成模型 (HBGM),以改进用于检测狭窄的 CNN 训练过程。在此,人工图像补丁被生成以扩大原始数据库,从而加速网络收敛。人工数据集由包含 50%狭窄和 50%非狭窄病例的 10000 张图像组成。此外,还使用可靠的 Fréchet Inception 距离 (FID) 对生成的数据进行定量评估。因此,通过使用所提出的框架,网络使用人工数据集进行预训练,然后使用真实的 XCA 训练数据集进行微调。真实数据集由 250 张 XCA 图像补丁组成,选择 125 张图像用于狭窄,其余用于非狭窄病例。此外,在网络架构中包含卷积块注意力模块 (CBAM) 作为自注意力机制,以提高网络的效率。
结果表明,使用所提出的生成模型进行预训练的网络的表现优于从头开始训练的网络。特别是,实现了 0.8934 的准确率、0.9031 的精度、0.8746 的敏感性和 0.8880 的 F1 得分,分别为 0.9111。生成的人工数据集的平均 FID 为 84.0886,具有更逼真的视觉 XCA 图像。
评估了不同的用于狭窄检测的 ResNet 架构,包括将注意力模块纳入网络。数值结果表明,通过使用 HBGM 可以获得比从头开始训练更高的性能,甚至超过使用 ImageNet 进行预训练的模型。