Suppr超能文献

社交媒体数据揭示了泽西虎蛾对城市栖息地的占据情况,而传统监测却未能做到。

Occupancy of Urban Habitats by the Jersey Tiger Moth Is Revealed by Social Media Data but Not Traditional Monitoring.

作者信息

Stephenson Nile, Pettorelli Nathalie, Early Regan

机构信息

Department of Zoology University of Cambridge Cambridge UK.

University Museum of Zoology Downing Place, Cambridge Cambridge UK.

出版信息

Ecol Evol. 2025 Mar 13;15(3):e71086. doi: 10.1002/ece3.71086. eCollection 2025 Mar.

Abstract

As the world's climate changes, species are undergoing range shifts. Range shifts are generally documented using databases such as the Global Biodiversity Information Facility (GBIF), which largely contain data from monitoring schemes and wildlife surveys. Such databases have two major limitations: (i) data may be spatially biased because traditionally surveyed areas are in rural habitats and (ii) there is a time lag between formal monitoring and survey data collection and assimilation into GBIF, which means rapid range shifts cannot be tracked. Alternative data sources, such as social media, could provide information on species distributions and range shifts that compensate for spatial biases in GBIF records because social media data may be collected outside traditionally surveyed areas. Such data are also usually shared online immediately after a wildlife sighting. The complementarity of GBIF and social media data, however, has rarely been assessed, particularly when tracking range shifts. Despite their potential utility, social media data may be particularly prone to temporary trends or geographic variation in behaviour that are not understood. We lack tools with which to counter these biases. To address these knowledge gaps, we compare the habitat usage revealed by biological records of the Jersey tiger moth from GBIF and from social media data sources (Instagram and Flickr). We develop a novel method to investigate recorder bias in social media data and compare between data sources. We find that biological records from Instagram reveal greater than expected occurrence in urban environments. Recorder effort differs notably between data sources and Instagram complements GBIF by recording species in areas unaccounted for by GBIF. By incorporating recorder effort metrics, data from social media sources could be used to improve monitoring of range-shifting species in urban spaces.

摘要

随着全球气候变化,物种正在发生分布范围的变化。分布范围的变化通常通过诸如全球生物多样性信息设施(GBIF)之类的数据库来记录,这些数据库主要包含来自监测计划和野生动物调查的数据。此类数据库有两个主要局限性:(i)数据可能存在空间偏差,因为传统的调查区域位于农村栖息地;(ii)正式监测与调查数据收集以及将其纳入GBIF之间存在时间滞后,这意味着无法追踪快速的分布范围变化。诸如社交媒体之类的替代数据源可以提供有关物种分布和分布范围变化的信息,以弥补GBIF记录中的空间偏差,因为社交媒体数据可能是在传统调查区域之外收集的。此类数据通常也会在野生动物被目击后立即在线共享。然而,GBIF和社交媒体数据的互补性很少得到评估,尤其是在追踪分布范围变化时。尽管社交媒体数据具有潜在用途,但可能特别容易受到尚不为人所知的临时趋势或行为地理差异的影响。我们缺乏应对这些偏差的工具。为了填补这些知识空白,我们比较了GBIF和社交媒体数据源(Instagram和Flickr)中泽西虎蛾的生物记录所揭示的栖息地使用情况。我们开发了一种新颖的方法来调查社交媒体数据中的记录者偏差,并在不同数据源之间进行比较。我们发现,Instagram上的生物记录显示城市环境中的出现频率高于预期。不同数据源的记录者工作量存在显著差异,Instagram通过在GBIF未涵盖的区域记录物种来补充GBIF。通过纳入记录者工作量指标,社交媒体源的数据可用于改善对城市空间中分布范围变化物种的监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验