Suppr超能文献

利用分子对接和骨架跃迁技术鉴定p56 SH2结构域抑制剂

Identifying p56 SH2 Domain Inhibitors Using Molecular Docking and Scaffold Hopping.

作者信息

Samanta Priyanka, Doerksen Robert J

机构信息

Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA, 38677-1848.

Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, USA, 38677-1848.

出版信息

Appl Sci (Basel). 2024 May;14(10). doi: 10.3390/app14104277. Epub 2024 May 17.

Abstract

Bacterial infections are the second-leading cause of death, globally. The prevalence of antibacterial resistance has kept the demand strong for the development of new and potent drug candidates. It has been demonstrated that Src protein tyrosine kinases (TKs) play an important role in the regulation of inflammatory responses to tissue injury, which can trigger the onset of several severe diseases. We carried out a search for novel Src protein TK inhibitors, commencing from reported highly potent anti-bacterial compounds obtained using the Mannich reaction, using a combination of e-pharmacophore modeling, virtual screening, ensemble docking, and core hopping. The top-scoring compounds from ligand-based virtual screening were modified using protein structure-based design approaches and their binding to the Src homology-2 domain of p56 TK was predicted using ensemble molecular docking. We have prepared a database of 202 small molecules and have identified 6 novel top hits that can be subjected to further investigation. We have also performed ADMET property prediction for the hit compounds. This combined computer-aided drug design approach can serve as a starting point for identifying novel TK inhibitors that could be further subjected to studies and validation of antimicrobial activity.

摘要

细菌感染是全球第二大致死原因。抗菌耐药性的普遍存在使得对新型高效候选药物的开发需求强劲。已证明Src蛋白酪氨酸激酶(TKs)在调节对组织损伤的炎症反应中起重要作用,而这种反应可引发多种严重疾病的发作。我们从使用曼尼希反应获得的已报道的高效抗菌化合物开始,结合电子药效团建模、虚拟筛选、集成对接和核心跳跃,开展了新型Src蛋白TK抑制剂的搜寻工作。基于配体的虚拟筛选中得分最高的化合物采用基于蛋白质结构的设计方法进行修饰,并使用集成分子对接预测它们与p56 TK的Src同源2结构域的结合情况。我们制备了一个包含202个小分子的数据库,并鉴定出6个可进一步研究的新型顶级命中物。我们还对命中化合物进行了ADMET性质预测。这种计算机辅助药物设计的综合方法可作为识别新型TK抑制剂的起点,这些抑制剂可进一步进行抗菌活性研究和验证。

相似文献

1
Identifying p56 SH2 Domain Inhibitors Using Molecular Docking and Scaffold Hopping.
Appl Sci (Basel). 2024 May;14(10). doi: 10.3390/app14104277. Epub 2024 May 17.
7
Identification of Potent and Selective JAK1 Lead Compounds Through Ligand-Based Drug Design Approaches.
Front Pharmacol. 2022 Apr 21;13:837369. doi: 10.3389/fphar.2022.837369. eCollection 2022.
9
Prediction of Toxoplasma gondii virulence factor ROP18 competitive inhibitors by virtual screening.
Parasit Vectors. 2019 Mar 13;12(1):98. doi: 10.1186/s13071-019-3341-y.

本文引用的文献

2
Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019.
Lancet. 2022 Dec 17;400(10369):2221-2248. doi: 10.1016/S0140-6736(22)02185-7. Epub 2022 Nov 21.
3
Molecular dynamics and computational study of Mannich-based coumarin derivatives: potent tyrosine kinase inhibitor.
J Biomol Struct Dyn. 2020 Nov;38(18):5419-5428. doi: 10.1080/07391102.2019.1701554. Epub 2019 Dec 18.
5
Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.
J Chem Theory Comput. 2010 May 11;6(5):1509-19. doi: 10.1021/ct900587b. Epub 2010 Apr 14.
6
OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.
J Chem Theory Comput. 2016 Jan 12;12(1):281-96. doi: 10.1021/acs.jctc.5b00864. Epub 2015 Dec 1.
7
ZINC 15--Ligand Discovery for Everyone.
J Chem Inf Model. 2015 Nov 23;55(11):2324-37. doi: 10.1021/acs.jcim.5b00559. Epub 2015 Nov 9.
8
How to make it in the urinary tract: a tutorial by Escherichia coli.
PLoS Pathog. 2012;8(10):e1002907. doi: 10.1371/journal.ppat.1002907. Epub 2012 Oct 4.
9
ZINC: a free tool to discover chemistry for biology.
J Chem Inf Model. 2012 Jul 23;52(7):1757-68. doi: 10.1021/ci3001277. Epub 2012 Jun 15.
10
Evaluation of virtual screening as a tool for chemical genetic applications.
J Chem Inf Model. 2009 Sep;49(9):2082-91. doi: 10.1021/ci900219u.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验