Suppr超能文献

肾损伤患者中肿瘤标志物胃泌素释放肽前体的评估。

Evaluation of a tumor marker gastrin-releasing peptide precursor in the patients with kidney injuries.

作者信息

Duan Nan, Li Zhihui, Li Zhiyan, Pang Lu, Du Jialin, Chang Le, Huang Haiming, Li Haixia

机构信息

Department of Clinical Laboratory, Peking University First Hospital Beijing 100034, China.

出版信息

Am J Cancer Res. 2025 Feb 15;15(2):824-832. doi: 10.62347/CBSP3728. eCollection 2025.

Abstract

Gastrin-releasing peptide precursor (ProGRP) is a bioactive precursor of GRP and might play an important role as an emerging tumor marker in early cancer diagnosis. It might also be abnormal in the nonmalignant disease and renal function abnormalities. The present study was undertaken to investigate the changes of ProGRP levels in patients with kidney injuries, especially with chronic kidney disease (CKD), determine the upper reference intervals and clinical diagnostic value of ProGRP in CKD, and thus help oncologists in interpreting ProGRP levels and making clinical judgments of malignances. 676 individuals were enrolled in this cross-sectional study and divided into five groups: healthy control (n=194), CKD (n=272), nephrotic syndrome (NS) (n=137), antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) (n=41), and urinary tract infection (UTI) (n=32). A total of 27 features including age, gender, and 25 laboratory markers were analyzed. Machine learning algorithms were built for the diagnostic models of CKD. Statistical analysis was performed by R software. It was shown that serum ProGRP level in CKD was significantly higher than that in healthy controls, UTI and NS ( < 0.01). The upper reference limit of ProGRP was 188.42 pg/ml for CKD, 245.40 pg/ml for CKD IV-V, and 97.25 pg/ml for NS. Compared with the healthy control, the level of serum ProGRP in CKD stages II, III, IV-V was significantly increased and elevated progressively with CKD grade ( < 0.01). Random Forest (RF) model works best among 4 building machine learning algorithms. 5 vital indicators, ProGRP, estimated glomerular filtration rate (eGFR), urea, albumin (ALB), and direct bilirubin (DBIL), were selected to establish RF model for diagnosing CKD with an area under the curve (AUC) of 0.96 (95% confidence interval [CI]: 0.94-0.97) and high sensitivity (0.89) and specificity (0.92). This study demonstrates that the level of ProGRP in patients with CKD, nephrotic syndrome or AAV, was significantly higher than that in the healthy population. The machine learning model of ProGRP with DBIL, eGFR, ALB, and urea, could provide good clinical value for CKD evaluation.

摘要

胃泌素释放肽前体(ProGRP)是胃泌素释放肽(GRP)的生物活性前体,作为一种新兴的肿瘤标志物,可能在早期癌症诊断中发挥重要作用。它在非恶性疾病和肾功能异常中也可能出现异常。本研究旨在调查肾损伤患者,尤其是慢性肾脏病(CKD)患者的ProGRP水平变化,确定ProGRP在CKD中的参考上限和临床诊断价值,从而帮助肿瘤学家解读ProGRP水平并对恶性肿瘤做出临床判断。本横断面研究纳入了676名个体,分为五组:健康对照组(n = 194)、CKD组(n = 272)、肾病综合征(NS)组(n = 137)、抗中性粒细胞胞浆抗体(ANCA)相关性血管炎(AAV)组(n = 41)和尿路感染(UTI)组(n = 32)。共分析了包括年龄、性别和25项实验室指标在内的27项特征。构建了用于CKD诊断模型的机器学习算法。采用R软件进行统计分析。结果显示,CKD患者的血清ProGRP水平显著高于健康对照组、UTI组和NS组(<0.01)。CKD患者ProGRP的参考上限为188.42 pg/ml,CKD Ⅳ - Ⅴ期为245.40 pg/ml,NS组为97.25 pg/ml。与健康对照组相比,CKD Ⅱ、Ⅲ、Ⅳ - Ⅴ期患者的血清ProGRP水平显著升高,并随CKD分级逐渐升高(<0.01)。在4种构建的机器学习算法中,随机森林(RF)模型效果最佳。选择5项重要指标,即ProGRP、估算肾小球滤过率(eGFR)、尿素、白蛋白(ALB)和直接胆红素(DBIL),建立用于诊断CKD的RF模型,曲线下面积(AUC)为0.96(95%置信区间[CI]:0.94 - 0.97),敏感性高(0.89),特异性高(0.92)。本研究表明,CKD、肾病综合征或AAV患者的ProGRP水平显著高于健康人群。ProGRP与DBIL、eGFR、ALB和尿素的机器学习模型可为CKD评估提供良好的临床价值。

相似文献

8
Clinical Application of Pro-Gastrin-Releasing Peptide.胃泌素释放肽原的临床应用
Clin Lab. 2018 Jul 1;64(7):1259-1268. doi: 10.7754/Clin.Lab.2018.180316.

本文引用的文献

1
The eGFR Equation.估算肾小球滤过率(eGFR)方程。
Am J Health Promot. 2024 Mar;38(3):435-436. doi: 10.1177/08901171241232057c.
6
Novel insight on GRP/GRPR axis in diseases.关于 GRP/GRPR 轴在疾病中的新见解。
Biomed Pharmacother. 2023 May;161:114497. doi: 10.1016/j.biopha.2023.114497. Epub 2023 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验