Suppr超能文献

用于快速氢氧化物传输的短氢键网络构建的层间限制作用

Interlayer confinement toward short hydrogen bond network construction for fast hydroxide transport.

作者信息

Guo Ruixiang, Zhou Yecheng, Wang Wei, Zhai Yeming, Liu Xiaofen, He Weijun, Ou Wen, Ding Rui, Zhang Hao-Li, Wu Meiling, Jiang Zhongyi, Zhou Kai-Ge

机构信息

Institute of Molecular Plus, Department of Chemistry, Tianjin University, Nankai District, Tianjin 300072, P. R. China.

Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China.

出版信息

Sci Adv. 2025 Mar 14;11(11):eadr5374. doi: 10.1126/sciadv.adr5374.

Abstract

Driven by boosting demands for sustainable energy, highly conductive hydroxide exchange membranes (HEMs) are urgently required in electrochemical conversion devices. The hydrogen bonds shorter than 2.5 angstrom are expected to accelerate the ion transport. However, short hydrogen bonds (SHBs) can hardly form naturally because of the electron-withdrawing capability of O atom, which impedes its applications in water-mediated ion transport. This work develops an interlayer confinement strategy to construct SHB networks in a two-dimensional (2D) nanocapillary assembled by bismuth oxyiodide (BiOI) nanosheets and boost the ionic conductivity of HEMs. With confined nanochannels and adjustable hydrophilic groups in BiOI-based HEMs, the number of SHBs increases by 12 times, creating a shortcut for the Grotthuss-type anion transport, which in turn affords a high ionic conductivity of 168 millisiemens per centimeter at 90°C, higher than polymeric HEM and 2D-based HEM. This work demonstrates the facile approach to generating SHB networks in 2D capillaries and opens a promising avenue to developing advanced HEMs.

摘要

受可持续能源需求不断增长的推动,电化学转换装置迫切需要高导电性的氢氧化物交换膜(HEMs)。短于2.5埃的氢键有望加速离子传输。然而,由于氧原子的吸电子能力,短氢键(SHBs)很难自然形成,这阻碍了其在水介导的离子传输中的应用。这项工作开发了一种层间限制策略,以在由碘氧化铋(BiOI)纳米片组装而成的二维(2D)纳米毛细管中构建SHB网络,并提高HEMs的离子电导率。基于BiOI的HEMs具有受限的纳米通道和可调节的亲水基团,SHBs的数量增加了12倍,为Grotthuss型阴离子传输创造了一条捷径,进而在90°C时提供了168毫西门子每厘米的高离子电导率,高于聚合物HEM和基于二维材料的HEM。这项工作展示了在二维毛细管中生成SHB网络的简便方法,并为开发先进的HEMs开辟了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验