Suppr超能文献

利用前表面荧光光谱法和不同多元分析技术检测和定量特级初榨橄榄油中其他等级橄榄油的掺假情况。

Detection and quantification of extra virgin olive oil adulteration by other grades of olive oil using front-face fluorescence spectroscopy and different multivariate analysis techniques.

作者信息

Zaroual Hicham, El Hadrami El Mestafa, Farah Abdellah, Ez Zoubi Yassine, Chénè Christine, Karoui Romdhane

机构信息

Environmental Technology, Biotechnology, and Valorization of Bio-resources Team, Laboratory of Research and Development in Engineering Sciences, Faculty of Science and Techniques Al-Hoceima, Abdelmalek Essaadi University. Tetouan, Morocco; Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques Fez, Sidi Mohamed Ben Abdellah University. Fez. Morocco; Sustainable Agrifoodtech Innovation and Research (SAFIR), Arras. France.

Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques Fez, Sidi Mohamed Ben Abdellah University. Fez. Morocco.

出版信息

Food Chem. 2025 Jul 1;479:143736. doi: 10.1016/j.foodchem.2025.143736. Epub 2025 Mar 10.

Abstract

This study explores the use of front-face fluorescence spectroscopy to detect extra virgin olive oil (EVOO) adulteration with lower-grade olive oils (virgin, ordinary virgin, lampante virgin, refined, and pomace) at 5-50 % adulteration levels. Emission spectra were analyzed using principal component analysis, factorial discriminant analysis, and partial least square discriminant analysis (PLS-DA) at excitation wavelengths of 270, 290, and 430 nm. PLS-DA at 430 nm provided the best results, achieving 100 % classification accuracy and perfectly separating 12 groups of pure and adulterated samples. For purity prediction, regression models (partial least squares, principal component, and support vector machine) applied to emission spectra data yielded high R values of 0.995, 0.96, and 0.98 at 430 nm, 290 nm, and 270 nm, respectively, with a low prediction error of 1.09 %. These findings confirm the method's high accuracy for detecting and quantifying EVOO adulteration.

摘要

本研究探讨了利用前表面荧光光谱法在5%-50%掺假水平下检测特级初榨橄榄油(EVOO)与低等级橄榄油(初榨、普通初榨、灯油级初榨、精炼和果渣油)掺假的情况。在270、290和430nm激发波长下,使用主成分分析、因子判别分析和偏最小二乘判别分析(PLS-DA)对发射光谱进行了分析。430nm处的PLS-DA效果最佳,分类准确率达到100%,并完美分离了12组纯样品和掺假样品。对于纯度预测,应用于发射光谱数据的回归模型(偏最小二乘法、主成分法和支持向量机)在430nm、290nm和270nm处分别产生了0.995、0.96和0.98的高R值,预测误差低至1.09%。这些发现证实了该方法在检测和量化EVOO掺假方面的高精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验