Suppr超能文献

预测核心等离子体湍流的里程碑:回旋动理学代码GENE的多通道成功验证

Milestone in predicting core plasma turbulence: successful multi-channel validation of the gyrokinetic code GENE.

作者信息

Höfler Klara, Görler Tobias, Happel Tim, Lechte Carsten, Molina Pedro, Bergmann Michael, Bielajew Rachel, Conway Garrard D, David Pierre, Denk Severin S, Fischer Rainer, Hennequin Pascale, Jenko Frank, McDermott Rachael M, White Anne E, Stroth Ulrich

机构信息

Max Planck Institute for Plasma Physics, Boltzmannstr. 2, Garching, Germany.

Technical University of Munich, TUM School of Natural Sciences, Physics Department, James-Franck-Str. 1, Garching, Germany.

出版信息

Nat Commun. 2025 Mar 15;16(1):2558. doi: 10.1038/s41467-025-56997-2.

Abstract

On the basis of several recent breakthroughs in fusion research, many activities have been launched around the world to develop fusion power plants on the fastest possible time scale. In this context, high-fidelity simulations of the plasma behavior on large supercomputers provide one of the main pathways to accelerating progress by guiding crucial design decisions. When it comes to determining the energy confinement time of a magnetic confinement fusion device, which is a key quantity of interest, gyrokinetic turbulence simulations are considered the approach of choice - but the question, whether they are really able to reliably predict the plasma behavior is still open. The present study addresses this important issue by means of careful comparisons between state-of-the-art gyrokinetic turbulence simulations with the GENE code and experimental observations in the ASDEX Upgrade tokamak for an unprecedented number of simultaneous plasma observables.

摘要

基于核聚变研究最近的几项突破,世界各地已开展了许多活动,以在尽可能快的时间尺度上开发核聚变发电厂。在这种背景下,利用大型超级计算机对等离子体行为进行高保真模拟,为通过指导关键设计决策来加速进展提供了主要途径之一。在确定磁约束聚变装置的能量约束时间(这是一个关键的关注量)时,陀螺动力学湍流模拟被认为是首选方法——但它们是否真的能够可靠地预测等离子体行为这个问题仍然没有答案。本研究通过对使用GENE代码进行的最先进的陀螺动力学湍流模拟与ASDEX升级托卡马克中前所未有的大量同步等离子体可观测量的实验观测结果进行仔细比较,解决了这个重要问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb94/11910665/65b9ad1d08c9/41467_2025_56997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验