Liu Anran, Zhang Jiang, Li Tong, Zheng Danyang, Ling Yihong, Lu Lianghe, Zhang Yuanpeng, Cai Jing
Department of Health Technology and Informatics, Hong Kong Polytechnic University, 11 Yuk Choi Road, Hong Kong SAR, China.
Division of Computational & Data Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA.
Hepatol Int. 2025 Mar 16. doi: 10.1007/s12072-025-10793-8.
Existing prognostic staging systems depend on expensive manual extraction by pathologists, potentially overlooking latent patterns critical for prognosis, or use black-box deep learning models, limiting clinical acceptance. This study introduces a novel deep learning-assisted paradigm that complements existing approaches by generating interpretable, multi-view risk scores to stratify prognostic risk in hepatocellular carcinoma (HCC) patients.
510 HCC patients were enrolled in an internal dataset (SYSUCC) as training and validation cohorts to develop the Hybrid Deep Score (HDS). The Attention Activator (ATAT) was designed to heuristically identify tissues with high prognostic risk, and a multi-view risk-scoring system based on ATAT established HDS from microscopic to macroscopic levels. HDS was also validated on an external testing cohort (TCGA-LIHC) with 341 HCC patients. We assessed prognostic significance using Cox regression and the concordance index (c-index).
The ATAT first heuristically identified regions where necrosis, lymphocytes, and tumor tissues converge, particularly focusing on their junctions in high-risk patients. From this, this study developed three independent risk factors: microscopic morphological, co-localization, and deep global indicators, which were concatenated and then input into a neural network to generate the final HDS for each patient. The HDS demonstrated competitive results with hazard ratios (HR) (HR 3.24, 95% confidence interval (CI) 1.91-5.43 in SYSUCC; HR 2.34, 95% CI 1.58-3.47 in TCGA-LIHC) and c-index values (0.751 in SYSUCC; 0.729 in TCGA-LIHC) for Disease-Free Survival (DFS). Furthermore, integrating HDS into existing clinical staging systems allows for more refined stratification, which enables the identification of potential high-risk patients within low-risk groups.
This novel paradigm, from identifying high-risk tissues to constructing prognostic risk scores, offers fresh insights into HCC research. Additionally, the integration of HDS complements the existing clinical staging system by facilitating more detailed stratification in DFS and Overall Survival (OS).
现有的预后分期系统依赖病理学家进行昂贵的手动提取,可能会忽略对预后至关重要的潜在模式,或者使用黑箱深度学习模型,限制了临床接受度。本研究引入了一种新型的深度学习辅助范式,通过生成可解释的多视图风险评分来对肝细胞癌(HCC)患者的预后风险进行分层,以补充现有方法。
510例HCC患者被纳入内部数据集(SYSUCC)作为训练和验证队列,以开发混合深度评分(HDS)。注意力激活器(ATAT)旨在启发式地识别具有高预后风险的组织,并基于ATAT建立了一个从微观到宏观水平的多视图风险评分系统来生成HDS。HDS也在一个包含341例HCC患者的外部测试队列(TCGA-LIHC)上进行了验证。我们使用Cox回归和一致性指数(c指数)评估预后意义。
ATAT首先启发式地识别坏死、淋巴细胞和肿瘤组织汇聚的区域,尤其关注高危患者中它们的交界处。据此,本研究开发了三个独立的风险因素:微观形态学、共定位和深度全局指标,将它们串联起来,然后输入神经网络为每个患者生成最终的HDS。HDS在无病生存期(DFS)的风险比(HR)(SYSUCC中HR为3.24,95%置信区间(CI)为1.91 - 5.43;TCGA-LIHC中HR为2.34,95%CI为1.58 - 3.47)和c指数值(SYSUCC中为0.751;TCGA-LIHC中为0.729)方面显示出有竞争力的结果。此外,将HDS整合到现有的临床分期系统中可以实现更精细的分层,从而能够在低风险组中识别潜在的高风险患者。
这种从识别高风险组织到构建预后风险评分的新型范式为HCC研究提供了新的见解。此外,HDS的整合通过促进DFS和总生存期(OS)中更详细的分层,补充了现有的临床分期系统。