Chen Yinyu, Nie Qianyun, Song Tao, Zou Xing, Li Qifu, Zhang Peng
Key Laboratory of Tropical Translational Medicine of Ministry of Education & the First Affiliated Hospital, Hainan Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China.
Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199 Hainan, China.
ACS Omega. 2025 Feb 25;10(9):9351-9367. doi: 10.1021/acsomega.4c10085. eCollection 2025 Mar 11.
Epilepsy encompasses a spectrum of chronic brain disorders characterized by transient central nervous system dysfunctions induced by recurrent, aberrant, synchronized neuronal discharges. Hippocampal sclerosis (HS) is identified as the predominant pathological alteration in epilepsy, particularly in temporal lobe epilepsy. This study investigates the metabolic profiles of epileptic hippocampal tissues using proteomics and lipidomics techniques. An epilepsy model was established in Sprague-Dawley (SD) rats via intraperitoneal injection of pentylenetetrazole (PTZ), with hippocampal tissue samples subsequently extracted for histopathological examination. Proteomics analysis was conducted using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), while lipidomics analysis employed ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC Q-TOF/MS). Proteomic analysis identified 144 proteins with significant differential expression in acute epileptic hippocampal tissue and 83 proteins in chronic epileptic hippocampal tissue. Key proteins, including neurofilament heavy (Nefh), vimentin (Vim), gelsolin (Gsn), NAD-dependent protein deacetylase (Sirt2), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (Cnp), myocyte enhancer factor 2D (Mef2d), and Cathepsin D (Ctsd), were pivotal in epileptic hippocampal tissue injury and validated through parallel reaction monitoring (PRM). Concurrently, lipid metabolomics analysis identified 32 metabolites with significant differential expression in acute epileptic hippocampal tissue and 61 metabolites in chronic epileptic hippocampal tissue. Bioinformatics analysis indicated that glycerophospholipid (GP) metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and glycerolipid (GL) metabolism were crucial in epileptic hippocampal tissue injury. Integrated proteomics and lipidomics analysis revealed key protein-lipid interactions in acute and chronic epilepsy and identified critical pathways such as sphingolipid signaling, autophagy, and calcium signaling. These findings provide deeper insights into the pathophysiological mechanisms of epileptic hippocampal tissue damage, potentially unveiling novel therapeutic avenues for clinicians.
癫痫是一系列慢性脑部疾病的统称,其特征是由反复出现的、异常的、同步的神经元放电引起短暂的中枢神经系统功能障碍。海马硬化(HS)被认为是癫痫,尤其是颞叶癫痫的主要病理改变。本研究使用蛋白质组学和脂质组学技术研究癫痫海马组织的代谢谱。通过腹腔注射戊四氮(PTZ)在Sprague-Dawley(SD)大鼠中建立癫痫模型,随后提取海马组织样本进行组织病理学检查。蛋白质组学分析使用用于相对和绝对定量的等压标签(iTRAQ)结合液相色谱-串联质谱(LC-MS/MS)进行,而脂质组学分析采用超高效液相色谱四极杆飞行时间质谱(UHPLC Q-TOF/MS)。蛋白质组学分析在急性癫痫海马组织中鉴定出144种具有显著差异表达的蛋白质,在慢性癫痫海马组织中鉴定出83种蛋白质。关键蛋白质,包括神经丝重链(Nefh)、波形蛋白(Vim)、凝溶胶蛋白(Gsn)、NAD依赖性蛋白脱乙酰酶(Sirt2)、2',3'-环核苷酸3'-磷酸二酯酶(Cnp)、肌细胞增强因子2D(Mef2d)和组织蛋白酶D(Ctsd),在癫痫海马组织损伤中起关键作用,并通过平行反应监测(PRM)得到验证。同时,脂质代谢组学分析在急性癫痫海马组织中鉴定出32种具有显著差异表达的代谢物,在慢性癫痫海马组织中鉴定出61种代谢物。生物信息学分析表明,甘油磷脂(GP)代谢、糖基磷脂酰肌醇(GPI)-锚生物合成和甘油脂(GL)代谢在癫痫海马组织损伤中至关重要。综合蛋白质组学和脂质组学分析揭示了急性和慢性癫痫中的关键蛋白质-脂质相互作用,并确定了鞘脂信号传导、自噬和钙信号传导等关键途径。这些发现为癫痫海马组织损伤的病理生理机制提供了更深入的见解,可能为临床医生揭示新的治疗途径。