Wang Tianqi, Kim Daniel H, Ding Chang, Wang Dingxun, Zhang Weiwei, Silic Martin, Cheng Xi, Shao Kunming, Ku TingHsuan, Zheng Conwy, Xie Junkai, Yuan Chongli, Chubykin Alexander, Staiger Christopher J, Zhang Guangjun, Deng Qing
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA.
bioRxiv. 2025 Mar 6:2025.03.06.641746. doi: 10.1101/2025.03.06.641746.
Potassium channels regulate membrane potential and diverse physiological processes, including cell migration. However, the specific function of the inwardly rectifying potassium channels in immune cell chemotaxis is unknown. Here, we identified that the inwardly rectifying potassium channel Kir7.1 (KCNJ13) maintains the resting membrane potential and is required for directional sensing during neutrophil chemotaxis. Pharmacological or genetic inhibition of Kir7.1 in neutrophils impaired direction sensing toward various chemoattractants without affecting cell polarization in multiple neutrophil models. Using genetically encoded voltage indicators, we observed oscillating depolarization of the membrane potential in protrusions in zebrafish neutrophils, and Kir7.1 is required for polarized depolarization towards the chemokine source. Focal depolarization with optogenetic tools biases pseudopod selection and induces protrusions. Global hyperpolarizing neutrophils stalled cell migration. Furthermore, Kir7.1 regulates GPCR signaling activation. This work adds membrane potential to the intricate feedforward mechanism, coupling the adaptive and excitable network required to steer immune cells in complex tissue environments.
钾通道调节膜电位和多种生理过程,包括细胞迁移。然而,内向整流钾通道在免疫细胞趋化作用中的具体功能尚不清楚。在这里,我们发现内向整流钾通道Kir7.1(KCNJ13)维持静息膜电位,并且是中性粒细胞趋化作用期间方向感知所必需的。在多种中性粒细胞模型中,对Kir7.1进行药理学或遗传学抑制会损害对各种趋化因子的方向感知,而不影响细胞极化。使用基因编码电压指示剂,我们观察到斑马鱼中性粒细胞突起中膜电位的振荡去极化,并且向趋化因子来源的极化去极化需要Kir7.1。使用光遗传学工具进行局部去极化会偏向伪足选择并诱导突起。整体超极化的中性粒细胞会使细胞迁移停滞。此外,Kir7.1调节GPCR信号激活。这项工作将膜电位添加到复杂的前馈机制中,耦合了在复杂组织环境中引导免疫细胞所需的适应性和兴奋性网络。