Sexton Ricky, Fazel Mohamadreza, Schweiger Maxwell, Pressé Steve, Beckstein Oliver
Department of Physics, Arizona State University, Tempe AZ, USA.
Center for Biological Physics, Arizona State University, Tempe AZ, USA.
bioRxiv. 2025 Mar 4:2024.11.07.622502. doi: 10.1101/2024.11.07.622502.
Molecular Dynamics (MD) simulations are a versatile tool to investigate the interactions of proteins within their environments, in particular of membrane proteins with the surrounding lipids. However, quantitative analysis of lipid-protein binding kinetics has remained challenging due to considerable noise and low frequency of long binding events, even in hundreds of microseconds of simulation data. Here we apply Bayesian nonparametrics to compute residue-resolved residence time distributions from MD trajectories. Such an analysis characterizes binding processes at different timescales (quantified by their kinetic off-rate) and assigns to each trajectory frame a probability of belonging to a specific process. In this way, we classify trajectory frames in an unsupervised manner and obtain, for example, different binding poses or molecular densities based on the timescale of the process. We demonstrate our approach by characterizing interactions of cholesterol with six different G-protein coupled receptors ( , , , , , ) simulated with coarse-grained MD simulations with the MARTINI model. The nonparametric Bayesian analysis allows us to connect the coarse binding time series data to the underlying molecular picture and, thus, not only infers accurate binding kinetics with error distributions from MD simulations but also describes molecular events responsible for the broad range of kinetic rates.
分子动力学(MD)模拟是研究蛋白质在其环境中的相互作用,特别是膜蛋白与周围脂质相互作用的一种通用工具。然而,即使在数百微秒的模拟数据中,由于大量噪声和长结合事件的低频出现,对脂-蛋白结合动力学进行定量分析仍然具有挑战性。在这里,我们应用贝叶斯非参数方法从MD轨迹计算残基分辨的停留时间分布。这种分析表征了不同时间尺度上的结合过程(由其动力学解离速率量化),并为每个轨迹帧分配属于特定过程的概率。通过这种方式,我们以无监督的方式对轨迹帧进行分类,并基于过程的时间尺度获得例如不同的结合构象或分子密度。我们通过用MARTINI模型的粗粒度MD模拟来表征胆固醇与六种不同的G蛋白偶联受体( , , , , , )之间的相互作用,展示了我们的方法。非参数贝叶斯分析使我们能够将粗略的结合时间序列数据与潜在的分子图像联系起来,因此,不仅能从MD模拟中推断出具有误差分布的准确结合动力学,还能描述导致广泛动力学速率的分子事件。